新書推薦:
《
一个人·谁也不是·十万人(诺贝尔文学奖得主反思自我的巅峰之作)
》
售價:NT$
250.0
《
重写晚明史(全5册 精装)
》
售價:NT$
3560.0
《
汉末晋初之际政治研究
》
售價:NT$
602.0
《
强者破局:资治通鉴成事之道
》
售價:NT$
367.0
《
鸣沙丛书·鼎革:南北议和与清帝退位
》
售價:NT$
551.0
《
从康德到黑格尔的发展:兼论宗教哲学(英国观念论名著译丛)
》
售價:NT$
275.0
《
突破不可能:用特工思维提升领导力
》
售價:NT$
352.0
《
王阳明大传:知行合一的心学智慧(精装典藏版)
》
售價:NT$
1010.0
|
內容簡介: |
全书由6章组成,其中:第1章主要介绍肺癌研究中利用影像基因等数据进行研究的应用领域及相关概念和理论基础;第2章针对疑似肺癌的疑难型肺结节,提出基于超体素3D区域增长的疑难型肺结节分割方法;第3章针对肺癌的亚型分类问题,提出了一种多级加权的深度森林模型和基于DNA甲基化进行细粒度的肺腺癌亚型分类;第4章针对肺腺癌复杂的发病机制,以及使用单一基因数据难以获得满意的分期结果,提出了基于多组学基因数据的改进的多级加权深度森林模型IMLW-gcForest以进行分期;第5章针对基因检测过程存在侵入性、时间长、费用高等问题,提出了多通道多任务的深度学习模型MMDL,利用非小细胞肺癌的CT影像来预测EGFR和KRAS的突变;第6章为总结与展望。
|
目錄:
|
第1章 绪论
1.1 研究背景和意义
1.2 国内外研究现状
1.2.1 肺结节分割
1.2.2 肺癌亚型分类
1.2.3 肺癌分期
1.2.4 肺癌影像预测基因突变
1.3 本书主要研究内容
1.4 本书的组织结构
第2章 基于超体素3D区域增长的疑难型肺结节分割方法
2.1 引言
2.2 相关工作
2.3 数据预处理
2.3.1 前景区域的分离及种子点的自动定位
2.3.2 3D掩模的构建
2.4 3D超体素的构建
2.4.1 超体素的构建原理
2.4.2 超体素的构建过程
2.5 模糊连通图的构建
2.5.1 模糊邻接关系及模糊邻接度
2.5.2 模糊连通性及模糊连通图的构建
2.6 基于超体素的3D区域增长
2.7 实验与结果
2.7.1 实验数据集及环境
2.7.2 不同方法的定性评估
2.7.3 不同方法之间的3D分割的单切片结果比较
2.7.4 不同区域增长方法之间的定量比较
2.7.5 与相关研究的比较
2.8 讨论
2.8.1 传统3D区域增长方法的阈值设置
2.8.2 参数γ1和γ2的设置
2.8.3 所提方法的局限性
2.9 本章小结
第3章 基于DNA甲基化的MLW-gcForest肺癌亚型分类模型
3.1 引言
3.2 相关工作
3.3 gcForest模型
3.4 MLW-gcForest模型
3.4.1 权重α的计算
3.4.2 排序优选算法
3.5 实验与结果
3.5.1 数据集及实验设置
3.5.2 与传统方法的结果对比
3.5.3 模型处理小样本数据的能力
3.5.4 模型缓解过拟合的风险
3.5.5 与相关研究的性能对比
3.6 讨论
3.6.1 主要参数设置
3.6.2 不同组学数据分类性能比较
3.7 本章小结
第4章 基于多组学基因数据的IMLW-gcForest肺癌分期模型
4.1 引言
4.2 相关工作
4.3 IMLW-gcForest模型及多组学决策融合
4.3.1 多组学基因数据预处理
4.3.2 IMLW-gcForest
4.3.3 多组学模型决策级融合
4.4 实验与结果
4.4.1 数据集和实验设置
4.4.2 基于基因表达、DNA甲基化、拷贝数变异的肺腺癌分期模型
4.4.3 基于多组学基因数据的肺腺癌分期模型
4.4.4 多组学基因数据模型和单种基因数据模型的比较
4.4.5 模型在小样本数据集上的有效性
4.4.6 模型防止过拟合的能力
4.5 讨论
4.5.1 不同加权策略下模型的性能对比
4.5.2 随机森林中决策树的数量设置
4.5.3 与其他分期研究的对比
4.6 本章小结
第5章 CT影像预测肺癌EGFR/KRAS基因突变的MMDL模型
5.1 引言
5.2 相关工作
5.3 MMDL模型总体框架
5.4 ROI的提取
5.5 Inception-attention-resnet模型的构建
5.5.1 Inception-resnet-V2模型
5.5.2 注意力模块
5.5.3 Inception-attention-resnet模型
5.6 模型的迁移学习
5.7 多通道决策融合
5.8 实验与结果
5.8.1 数据集
5.8.2 与传统方法的比较
5.8.3 与其他深度模型的比较
5.8.4 模型的可视化
5.8.5 多视图结果的对比
5.8.6 与相关研究的对比
5.9 讨论
5.9.1 迁移学习对分类结果的影响
5.9.2 病历信息对分类结果的影响
5.9.3 注意力机制对分类结果的影响
5.10 本章小结
第6章 总结与展望
6.1 总结
6.2 展望
缩略语
参考文献
|
|