新書推薦:
《
爱你,是我做过最好的事
》
售價:NT$
254.0
《
史铁生:听风八百遍,才知是人间(2)
》
售價:NT$
254.0
《
量子网络的构建与应用
》
售價:NT$
500.0
《
拍电影的热知识:126部影片里的创作技巧(全彩插图版)
》
售價:NT$
500.0
《
大唐名城:长安风华冠天下
》
售價:NT$
398.0
《
情绪传染(当代西方社会心理学名著译丛)
》
售價:NT$
403.0
《
中国年画 1950-1990 THE NEW CHINA: NEW YEAR PICTURE 英文版
》
售價:NT$
1100.0
《
革命与反革命:社会文化视野下的民国政治(近世中国丛书)
》
售價:NT$
435.0
|
編輯推薦: |
本书读者对象为广大有志从事生命科学领域与药物研发领域交叉研究的科研或技术工作者,一、通过系统介绍人工智能算法,阐述不同算法的原理、应用场景和算法特点,为后续介绍人工智能与药物研发的交叉内容提供基础,一方面为非计算机专业的读者普及算法方面的认知,另一方面为计算机专业的读者提供系统性回顾;二、为数据基础与表征;三、以药物研发流程为书籍脉络,针对每个人工智能算法课融入的关键步骤,首先介绍药物设计基础原理与现存挑战,进而系统性回顾介绍AI算法在该研究方向上的进展情况。四、程序代码。 本书基于人才培养,特色鲜明: ①本书结合分层式、渐近式和拓展式等多样的知识介绍形式,深入浅出地介绍药物设计原理,剖析人工智能的交叉应用实例,展望发展方向,适合于不同知识储备、不同研究领域的读者。 ② 目标面向药物科学、生命科学领域与计算机科学领域的交叉研究。分别以介绍人工智能算法与药物设计原理为基础,阐述基础原理;介绍交叉应用与研究进展,让读者概览前沿内容;之后提供程序代码实例,让读者学以致用,进行实战练习。“教-学-用”一脉贯通。 ③各个章节的作者均为所涉研究专题的专家,精通各领域的研究进展、存在的问题和发展前景
|
內容簡介: |
本书主要内容分为四部分:①人工智能算法基础;②数据基础与表征;③人工智能与药物设计;④程序代码。通过系统介绍人工智能算法,阐述不同算法的原理、应用场景和算法特点,为后续介绍人工智能与药物研发的交叉内容提供基础。全书以药物研发流程为脉络,针对每个人工智能算法融入的关键步骤,首先介绍药物设计基础原理与现存挑战,进而系统性回顾介绍人工智能算法在该研究方向上的进展情况,每部分都穿插介绍已有的交叉应用实例,以利于加深对图书内容的理解与灵活运用。提供原始的代码文件,为读者开展实践应用提供直接资料。
|
關於作者: |
李洪林,华东师范大学紫江学者特聘教授,人工智能新药创智中心主任;华东理工大学药学院兼职教授,上海市新药设计重点实验室主任;临港实验室副主任。入选国家杰出青年科学基金,国家万人计划领军人才等。获自然科学一等奖、中国青年科技奖等多项奖励。享受国务院政府特殊津贴。长期致力于药物科学基础和新药发现,围绕靶标发现和药物设计中的科学问题,发展人工智能与药物设计方法和软件,开展新靶标发现和创新药物发现研究。现已在 PNAS、NAR、JMC等专业期刊上发表论文180余篇,获授权专利50余项;已发展药物设计和靶标预测新方法和软件10余套,建立的方法和平台全球科研用户超过3.5万;发现原创候选药物十余个,已实现科研成果转化6项。 郑明月,中国科学院上海药物研究所研究员,课题组长,博士生导师。入选国家杰出青年科学基金,中科院青年创新促进会会员,腾讯 AI Lab 犀牛鸟专项研究计划。获得中国药学会施维雅青年药物化学奖,上海市人才发展资金,药明康德生命化学研究奖等奖励和荣誉。针对人工智能药物设计开展多学科交叉研究,在数据信息资源的挖掘和可持续利用,人工智能算法和软件开发,及其在药物化学和药理学研究中的概念验证和应用探索方面取得了阶段性的进展。开发的“基于大数据和人工智能的药物设计前沿技术”获得第十五届“药明康德生命化学研究奖”,并入选中国科协发布的首届“科创中国”先导技术榜单。 朱峰,浙江大学长聘正教授,博士生导师。入选国家万人计划领军人才、国家四青人才、科技部创新人才推进计划科技创新领军人才、浙江省杰出青年基金获得者、浙江省千人计划创新长期。爱思唯尔出版社Comput Biol Med杂志主编,美国化学会J Chem Inf Model杂志副主编。运用人工智能、复杂网络分析等生物信息学手段和多组学新技术,分析和发现具有治疗效用药物靶点的成药性和系统生物学特性,发展新颖的用于药靶发现的新型预测方法和面向全球的在线工具,并进一步研究多靶点药物与重要靶点的相互作用机制。 白芳,上海科技大学免疫化学研究所研究员,生命科学与技术学院常任助理教授,兼任信息科学与技术学院特聘教授、博士生导师。曾任美国得克萨斯大学休斯顿健康科学中心助理教授。获中央组织部青年海外高层次人才,上海市青年科技启明星。研究方向以发展药物设计新计算方法为主,并致力于新药设计与药物作用机制等研究应用。在Science、Nature、PNAS、Chem Sci、NAR等期刊上发表论文40余篇,申请专利10余项。
|
目錄:
|
绪论 ——人工智能与药物设计的发展 001
第一部分 人工智能算法基础 009
第1章 机器学习基础 010
1.1 监督学习 010
1.1.1 概念 010
1.1.2 分类 011
1.1.3 回归 013
1.1.4 小结 015
1.2 无监督学习 015
1.2.1 无监督学习的基本概念 015
1.2.2 无监督学习的基本算法 016
1.2.3 小结 028
1.3 强化学习 029
1.3.1 强化学习的概念 029
1.3.2 有模型学习和免模型学习 030
1.3.3 求解方法 031
1.3.4 强化学习算法 033
1.3.5 小结 036
1.4 模型评估与验证 037
1.4.1 模型评估指标介绍 037
1.4.2 模型验证方法介绍 041
1.4.3 小结 044
1.5 应用实例与代码 044
1.5.1 监督学习应用 044
1.5.2 无监督学习应用 045
参考文献 046
拓展阅读 047
第2章 深度网络结构设计基础 050
2.1 卷积神经网络 050
2.1.1 卷积神经网络的组件 050
2.1.2 神经网络的训练 053
2.1.3 基于卷积神经网络的图像分类 054
2.1.4 基于卷积神经网络的图像分割 057
2.2 循环神经网络 063
2.2.1 循环神经网络结构 063
2.2.2 双向循环神经网络 064
2.2.3 深度循环神经网络 065
2.2.4 长短期记忆网络 065
2.2.5 双向长短期记忆网络 066
2.2.6 门控循环单元 067
2.2.7 基于长短期记忆网络的视频分类 067
2.3 Transformer 068
2.3.1 自然语言处理中的Transformer 068
2.3.2 视觉任务中的Transformer 070
2.4 图神经网络 071
2.4.1 图卷积神经网络 072
2.4.2 图注意力网络 072
2.5 小结 073
参考文献 073
拓展阅读 074
第3章 深度生成模型 078
3.1 变分自编码器 078
3.1.1 自编码器 078
3.1.2 隐变量生成模型 080
3.1.3 变分自编码器 081
3.2 生成式对抗网络 084
3.2.1 生成式对抗网络的理论分析 085
3.2.2 Wasserstein生成式对抗网络 086
3.3 流生成模型 088
3.3.1 随机变量替换 088
3.3.2 标准化流 089
3.3.3 RealNVP网络 091
3.3.4 Glow 091
3.3.5 流模型在文本预训练表示上的应用 093
3.4 小结 093
参考文献 094
第4章 深度强化学习 095
4.1 基于值函数的算法 095
4.1.1 动态规划 096
4.1.2 蒙特卡洛方法 097
4.1.3 时间差分学习 097
4.1.4 基于值函数的深度强化学习 098
4.2 策略梯度算法 102
4.2.1 策略梯度 102
4.2.2 策略梯度的基本形式 102
4.2.3 基于执行器-评价器的策略梯度方法 104
4.2.4 深度确定性策略梯度 106
4.2.5 异步优势算法 107
4.3 CartPole编程实例 108
4.3.1 CartPole简介 108
4.3.2 DQN 109
4.3.3 Actor-Critic 111
4.3.4 训练结果 113
4.4 小结 113
参考文献 114
拓展阅读 114
第5章 自然语言处理、知识图谱和可解释人工智能 117
5.1 自然语言处理与文本挖掘 117
5.1.1 自然语言处理概述 117
5.1.2 NLP任务 119
5.1.3 医学领域的NLP任务 121
5.1.4 NLP评估度量 123
5.1.5 NLP实践准备 124
5.1.6 医疗领域的关系抽取 130
5.1.7 应用案例:药品不良反应抽取 133
5.1.8 小结 135
5.2 知识图谱 135
5.2.1 知识图谱介绍 135
5.2.2 知识图谱构建技术 137
5.2.3 知识图谱的应用技术 139
5.2.4 生物医药知识图谱 140
5.2.5 应用案例:基于“疾病-化合物”关系的药物筛查 142
5.2.6 小结 142
5.3 可解释人工智能 142
5.3.1 可解释性概述 142
5.3.2 可解释性相关方法 143
5.3.3 可解释性的评价方法 149
5.3.4 可解释性应用案例 150
5.3.5 小结 151
参考文献 151
拓展阅读 154
第二部分 数据基础与表征 159
第6章 分子结构与生物活性数据 160
6.1 生物大分子结构数据库 160
6.1.1 蛋白质和核酸三维结构数据库 161
6.1.2 生物大分子复合物结构数据库 163
6.1.3 特定功能或结构类型的生物大分子结构数据库 168
6.1.4 肽类结构数据库 174
6.2 小分子结构数据库 175
6.2.1 综合性库 175
6.2.2 分子晶体结构数据库 179
6.2.3 天然产物数据库 181
6.2.4 虚拟筛选分子库 182
6.2.5 算法生成的虚拟分子库 183
6.3 生物活性数据库 186
6.4 小结 188
参考文献 191
拓展阅读 195
第7章 分子数据的表征 198
7.1 小分子化合物的表征 198
7.1.1 基于专业知识的小分子表征 198
7.1.2 基于字符串的表征 206
7.1.3 基于图的表征 214
7.1.4 基于图像的表征 218
7.1.5 实施案例 221
7.2 蛋白质的表征 221
7.2.1 基于序列固有性质 222
7.2.2 基于物理化学性质 228
7.2.3 基于结构性质 232
7.2.4 蛋白质表征相关工具 233
7.3 核酸序列的表征 236
7.3.1 基于序列信息的特征表征 236
7.3.2 基于物理化学性质的特征表征 243
7.3.3 基于二级结构的特征表征 250
7.3.4 实施案例 253
7.4 小结与展望 253
参考文献 253
拓展阅读 257
第三部分 人工智能与药物设计 261
第8章 药物靶标发现与识别 262
8.1 生物组学分析与药物靶标发现和药物重定位 262
8.1.1 多组学数据分析 262
8.1.2 基于组学的药物靶点预测 262
8.1.3 基于组学的药物重定位 267
8.1.4 案例解析 269
8.1.5 小结与展望 271
8.2 基于序列的蛋白质可药靶性的发现 272
8.2.1 基于蛋白质序列相似性的功能预测方法 272
8.2.2 可靠药物靶点信息的数据源 277
8.2.3 基于序列相似性比对的可药靶性发现 279
8.2.4 基于序列衍生性质的可药靶性发现 280
8.3 基于结构与网络的可药靶性识别 285
8.3.1 基于结构的可药靶性识别 285
8.3.2 基于网络的可药靶性识别 291
8.3.3 小结与展望 303
8.4 网络药理学与药物重定向 303
8.4.1 网络药理学概述 303
8.4.2 生物分子网络的构建 305
8.4.3 基于网络的靶标发现和药物重定向 311
8.4.4 实施案例——基于图神经网络的药物重定位 316
8.4.5 小结与展望 317
参考文献 317
第9章 分子结构预测 323
9.1 蛋白质结构预测 323
9.1.1 蛋白质结构 323
9.1.2 蛋白质二级结构预测 325
9.1.3 蛋白质三级结构预测 326
9.1.4 基于模板的蛋白质结构建模 328
9.1.5 基于穿线法的蛋白质结构预测 330
9.1.6 基于片段组装的方法 332
9.1.7 从头折叠算法 333
9.1.8 基于氨基酸协同突变的接触预测 334
9.1.9 基于端到端的结构预测 335
9.1.10 小结与展望 338
9.2 核酸结构预测 338
9.2.1 核酸结构概述 338
9.2.2 核酸结构预测中的传统计算方法 341
9.2.3 人工智能在核酸结构预测中的应用 346
9.2.4 应用实例与代码 348
9.2.5 小结与展望 349
9.3 小分子构象预测 349
9.3.1 分子的几何结构 349
9.3.2 小分子构象预测方法的发展 351
9.3.3 实施案例 357
9.3.4 小结与展望 360
参考文献 360
拓展阅读 370
第10章 量子化学与分子力场的发展 373
10.1 人工智能用于计算化学 373
10.1.1 加速量子化学计算 373
10.1.2 人工智能用于化学反应 377
10.1.3 人工智能在高阶量子电荷预测中的应用 383
10.1.4 小结与展望 388
10.2 分子力场的发展及优化 389
10.2.1 经典分子力场 389
10.2.2 极化力场 394
10.2.3 机器学习力场 396
10.2.4 机器学习力场的优势 401
10.2.5 机器学习力场的挑战 404
参考文献 406
拓展阅读 411
第11章 小分子药物生成与从头设计 414
11.1 基于片段的药物设计 414
11.1.1 简介 414
11.1.2 FBDD步骤 415
11.1.3 计算机辅助的基于片段的药物设计 420
11.1.4 FBDD的经典成功案例 420
11.1.5 小结与展望 423
11.2 分子生成模型 423
11.2.1 基于GAN的分子生成模型 423
11.2.2 其他分子生成模型 437
11.2.3 基于GAN的分子生成模型的优势与不足 440
11.2.4 分子生成模型的挑战与展望 442
11.2.5 小结 445
11.3 三维分子生成 446
11.3.1 三维分子生成中的分子表示 446
11.3.2 三维分子生成模型 449
11.3.3 三维分子生成模型在药物发现中的应用 456
11.4 逆合成预测 457
11.4.1 简介 457
11.4.2 单步逆合成 457
11.4.3 多步逆合成 461
11.4.4 小结 463
11.5 反应表现预测及反应条件优化 463
11.5.1 反应产率预测 463
11.5.2 反应活性预测 466
11.5.3 反应选择性预测 467
11.5.4 反应活化能和过渡态预测 470
11.5.5 反应条件优化 472
11.5.6 小结 474
参考文献 474
拓展阅读 482
第12章 小分子药物设计与优化 485
12.1 小分子-靶标结合亲和力预测与打分函数的设计 485
12.1.1 小分子靶标结合亲和力预测与打分函数 485
12.1.2 基于人工智能的打分函数 486
12.1.3 基于人工智能的DTA预测模型 496
12.1.4 问题和展望 498
12.2 融合人工智能的分子对接与虚拟筛选方法 499
12.2.1 分子对接方法与挑战 499
12.2.2 机器学习与系综对接 499
12.2.3 深度学习与结合构象预测 502
12.2.4 深度学习与虚拟筛选 505
12.3 基于配体的虚拟筛选 507
12.3.1 传统基于配体的虚拟筛选方法 507
12.3.2 基于人工智能的配体虚拟筛选方法 511
参考文献 514
拓展阅读 519
第13章 基于人工智能的大分子药物设计 522
13.1 大环类药物设计 522
13.1.1 大环类药物概述 522
13.1.2 大环类药物的研究现状 523
13.1.3 大环类药物的设计方法 527
13.1.4 大环类药物的设计实例 532
13.2 蛋白质与多肽类大分子药物设计 535
13.2.1 蛋白质与多肽类大分子药物概述 535
13.2.2 蛋白质与多肽类大分子药物设计中的挑战 536
13.2.3 蛋白质与多肽类大分子药物的设计方法 538
13.2.4 蛋白质与多肽类大分子药物的设计实例 543
13.3 核酸类大分子药物设计 545
13.3.1 核酸类大分子药物概述 545
13.3.2 核酸类大分子药物的设计模式 546
13.3.3 核酸类大分子药物的设计方法 548
13.3.4 核酸类大分子药物的设计实例——以NucleicNet为例 551
参考文献 555
拓展阅读 559
第14章 ADMET性质预测 562
14.1 基于人工智能的ADMET预测 562
14.1.1 基于人工智能的ADMET预测概览 562
14.1.2 可解释性人工智能在ADMET中的应用 567
14.2 药物毒性预测 574
14.2.1 药物毒理学简介 574
14.2.2 计算毒理学的出现和发展 575
14.2.3 人工智能在毒性预测方面的进展 575
14.2.4 毒性预测模型 576
14.2.5 人工智能的可解释性与警示子结构的识别 582
14.2.6 小结与展望 583
14.3 药物代谢产物预测 584
14.3.1 药物代谢及药物代谢预测简介 584
14.3.2 药物代谢产物预测的研究现状 585
14.3.3 药物代谢产物预测的案例分析 591
14.3.4 药物代谢预测的挑战与展望 593
参考文献 594
拓展阅读 603
第15章 药物晶型预测与剂型设计 606
15.1 药物晶型预测 606
15.1.1 药物晶型的结构 606
15.1.2 药物晶型的性质 608
15.1.3 药物晶型的预测 610
15.2 药物剂型设计 617
15.2.1 药物剂型简介 617
15.2.2 原料药性质对剂型和工艺的影响 619
15.2.3 药物剂型设计与预测 622
15.3 展望 624
参考文献 625
拓展阅读 627
附录:缩略语对照表 629
索引 637
|
內容試閱:
|
时光如白驹过隙。特殊的三年使大家的生活和工作都放慢了节奏,也改变了人们的行为和思维方式。回溯过往,思绪又被拉回至2019年8月中旬,2019中国药物化学学术会议在成都举办。蒋华良院士做了《我国药物分子设计40年历程》的大会报告,并在《中国科学:生命科学》期刊“新中国成立70周年生命科学研究进展”专辑上同期发表了《中国药物分子设计40年发展成就》的评述文章。该文系统地总结了我国药物分子设计在方法发展和具体药物研发中40年的进展,指出中国药物创新的春天已经来临,而作为创新药物研发的重要技术支撑的药物设计也必将迎来新的发展机遇和更为广阔的发展空间,并预见在市场需求和技术进步的双重推动之下,药物设计在我国创新药物研发中必将发挥更大的作用。
当时,人工智能(Artificial Intelligence,AI)在国外的进展已经有了坚实和颠覆性的成果。如DeepMind提出Alpha系列:从Alpha Go到Alpha Zero,再到AlphaStar、AlphaFold,以及到现在的AlphaFold2等科学发现领域的一项项重要里程碑,给大家展示了人工智能和传统科学结合带来的巨大潜能,也使得从人类思维方式中获取灵感的人工智能技术,逐渐在慢慢改变人类的学习和思维方式。作为人工智能技术的重要应用场景,其在我国药物设计领域的探索和研究正逐步开展。尽管当时会场上与人工智能新药发现相关的报告还不是很多,但已经场场爆满,足以说明大家对该主题的兴趣和期望之高。编者本人也受邀做了《人工智能与药物设计》命题报告,就前期发展的一些AI药物设计方法与具体的新药发现相结合案例在会上进行了分享。会后化学工业出版社编辑邀约,希望我能组织编写一本入门级或研究生教育课程读本。但苦于本人才疏学浅又事务繁忙,一直不能静下心来仔细思考、理清思路,又担心撰写的速度跟不上国际该领域发展的进度,便一直没有组织好编写队伍。感谢编辑的信任和坚持,在她的再三邀约下,终于在2022年上海新冠疫情封控的几个月里,组织国内本领域的中青年学者完成了本书初稿的撰写。
人工智能药物设计是一门基于计算机科学、药学、人工智能、化学和生物学等学科的交叉研究方向。目的是利用人工智能技术,阐明药物分子与靶标生物大分子的相互作用以及药物在体内的复杂过程,揭示药物分子结构与生物活性、成药性和安全性的相互关系,助力新药物研发和先进制造。以人工智能等为代表的新一代信息技术正推动着生命与健康领域研究发生快速变革。
人工智能在创新药物研发领域的应用需要算法工程师和药学家、化学家的紧密合作,更需要同时掌握人工智能技术和药物设计研发手段的复合型创新人才。但现实情况是,一方面,交叉学科人才培养规模与人工智能医药研发的产业需求规模相比,存在较大缺口;另一方面,由于相关课程大纲及学习材料相对匮乏,各地院校目前在相关人才培养过程中存在挑战,学生较难在短时间内建立系统化的知识体系。本书主要从人工智能重要算法理论知识及其在药物设计中的应用进展两方面展开介绍,受众面向有兴趣开展学科交叉研究的深度学习初学者、进阶者及工程师,同时包括生物和医药相关专业的本科生、研究生和研发人员。
本书首先强调以人工智能算法为切入点,提高药物设计的质量和效率。第一部分系统介绍了深度学习的基础知识和常用算法;第二部分介绍了在药物分子设计中常见的数据类型,简要地介绍了药物相关的数据资源,并且探讨了如何设计神经网络架构来自动学习不同数据类型的特征和表示方法;第三部分主要介绍了人工智能算法在新药研发不同环节或细分场景中的应用和案例,这些场景涉及不同学科的交叉,也有技术之间的互相渗透。高价值的应用场景、高效的算法、海量的数据,是实现人工智能垂直领域价值的基础。在药物研究的一些场景中,人工智能已经开始帮助解决行业的核心痛点,而在另一些场景中仍有待探索,仍需要长时间的积累与提升才有可能真正实现突破。
本书在专业铺陈中,突出问题导向。以药物研发中的科学问题和技术难题为落脚点,最终满足临床新药发现需求。这一方面要求我们深入理解新药发现中具体的生物学、化学或医学等科学问题,另一方面需要我们具备将其转化成为应用边界清晰的人工智能建模问题的能力。我们希望读者能通过本书所介绍的算法和应用案例,学习到如何从计算机、数据和信息科学的角度思考和解决生命科学问题,以及如何利用人工智能这一前沿和先进方法解决新药研发中的技术难点问题,而不是简单地了解人工智能药物设计能做些什么。
本书作者都是国内外长期从事机器学习、人工智能和药物设计领域科研和教学工作的中青年学者,能够较为准确地把握本领域研究的最新进展和发展方向。他们结合自己丰富的工作和实践经验,在本书中系统地介绍了人工智能和药物设计的理论、技术、方法及其实际应用。由于绝大部分内容都出自编写者的研究工作和经验,因此本书兼具较高的学术性和实用性。感谢化学工业出版社对本书的重视以及为本书出版所做的一切。
谨以此书献给中国科学院院士蒋华良先生!先生是我国药物设计学科的开拓者之一,也是我国人工智能新药设计领域的先驱者。他带领我们率先开展了基于大数据和人工智能的药物设计前沿技术的前瞻性探索,极大地推动了我国该前沿领域和人工智能药物发现产业的发展。先生虽已仙逝,但他的科学精神将永存。
限于编者水平和该领域发展迅速,难免有疏漏和不当之处,恳请广大师生和同行批评指正。
编者
2023年4月
|
|