新書推薦:
《
治盗之道:清代盗律的古今之辨
》
售價:NT$
556.0
《
甲骨文丛书·剑桥世界暴力史(第一卷):史前和古代世界(套装全2册)
》
售價:NT$
959.0
《
甲骨文丛书·中华早期帝国:秦汉史的重估
》
售價:NT$
1367.0
《
欲望与家庭小说
》
售價:NT$
449.0
《
惜华年(全两册)
》
售價:NT$
320.0
《
甲骨文丛书·古代中国的军事文化
》
售價:NT$
454.0
《
中国王朝内争实录(套装全4册):从未见过的王朝内争编著史
》
售價:NT$
1112.0
《
半导体纳米器件:物理、技术和应用
》
售價:NT$
806.0
編輯推薦:
目前,使用R语言进行教学和科研已经具备一定的规模。然而,并没有一本特别实用的R语言和统计学相结合的作品。这本书每一章都会简单介绍相关话题的统计学理论,更多的提供实际数据的分析代码,以及作者的编程经验。学习本书将令初学者少走许多弯路。此外,本书每一章末还配有适量的练习题,可供练习或者教学使用。
业界对R语言的重视程度也逐年提升。而这本书对于在企业中处理实际数据的分析人员和建模人员来说,应该是更为趁手的一本工具书。深入浅出的理论介绍,可重复的分析流程,宝贵的编程经验,这些恰恰是业界所需要的。
本书配套有相关的R包ISwR,提供了本书中所使用的实际数据,方便读者练习使用。
內容簡介:
《R语言统计入门(第 2版)》以恰当的方式向初学者介绍了R语言的全貌,内容涵盖基本的R编程方法、基本数据处理和一些高 级数据操作的技巧,有助于读者理解R向量化编程的特点。此外,作者在《R语言统计入门(第 2版)》中还详细描述了包含回归分析、假设检验、广义线性模型、非线性拟合等常用统计方法的原理。虽然《R语言统计入门(第 2版》以实际案例解析居多,但是并非不重视理论,作者恰当而到位地描述了理论方面的内容,既不晦涩,也非浅薄,而是向读者打开了一扇窗。作者希望这《R语言统计入门(第 2版)》可以作为一道“开胃菜”引导更多的人投入到对统计和R的研究之中。
本书适合数据分析,数据统计人员及R用户学习参考。
關於作者:
Peter Dalgaard是哥本哈根大学生物统计系的教授。1997年便成为R语言核心团队成员。具有丰富的R语言统计分析的实战和教学经验。 郝智恒,兰州人,南开大学数理统计专业毕业,目前在阿里做数据挖掘工程师。推崇开源,认为唯有共享和交流才能让这个世界变好,固执的认为一切技术上的封闭和试图垄断都是纸老虎。 何通,生长于桂林,求学于广州,喜统计,好编程,结交众友,不亦乐乎。 邓一硕,毕业于中央财经大学统计学院统计专业,现效力于首钢总公司计财部。国内*最大的统计学专业社区“统计之都”理事人员,感兴趣的领域是时间序列分析及数据挖掘技术在金融投资分析中的应用。 刘旭华,现为中国农业大学理学院应用数学系副教授,北京理工大学博士,美国北卡莱罗纳大学教堂山分校(University of North Carolina at Chapel Hill)访问学者,主要从事数理统计方向的研究工作。主持和参与多项国家自然科学基金及其他科研基金项目,发表科研论文多篇。
目錄 :
目 录
第 1章 基础知识 1
1.1 初始步骤 1
1.1.1 大型计算器 2
1.1.2 赋值 3
1.1.3 向量运算 4
1.1.4 标准过程 5
1.1.5 作图 6
1.2 R语言基础 8
1.2.1 表达式和对象 8
1.2.2 函数和参数 9
1.2.3 向量 10
1.2.4 引用和转义序列 10
1.2.5 缺失值 11
1.2.6 生成向量的函数 11
1.2.7 矩阵和数组 13
1.2.8 因子 15
1.2.9 列表 16
1.2.10 数据框 17
1.2.11 索引 17
1.2.12 条件选择 18
1.2.13 数据框的索引 19
1.2.14 分组数据和数据框 20
1.2.15 隐式循环 21
1.2.16 排序 23
1.3 练习题 24
第 2章 R语言环境 25
2.1 会话管理 25
2.1.1 工作空间窗口 25
2.1.2 文本输出 26
2.1.3 脚本 27
2.1.4 获取帮助 27
2.1.5 包 28
2.1.6 内置数据 29
2.1.7 attach和detach 29
2.1.8 subset,transform和within 31
2.2 作图系统 32
2.2.1 图形布局 32
2.2.2 利用部分构造图形 33
2.2.3 par的使用 34
2.2.4 组合图形 35
2.3 R编程 36
2.3.1 流程控制 37
2.3.2 类和类函数 37
2.4 数据输入 38
2.4.1 读取文本文件 39
2.4.2 read.table的进一步讨论 41
2.4.3 数据编辑器 42
2.4.4 其他程序的接口 43
2.5 练习题 44
第3章 概率和分布 45
3.1 随机抽样 45
3.2 概率计算和排列组合 46
3.3 离散分布 47
3.4 连续分布 47
3.5 R中的内置分布 48
3.5.1 密度 48
3.5.2 累积分布函数 50
3.5.3 分位数 51
3.5.4 随机数字 52
3.6 练习题 53
第4章 描述性统计和图形 54
4.1 单组的汇总统计量 54
4.2 分布的图形展示 58
4.2.1 直方图 58
4.2.2 经验累积分布 59
4.2.3 Q-Q图 59
4.2.4 箱式图 60
4.3 分组数据的汇总统计量 61
4.4 分组数据作图 64
4.4.1 直方图 64
4.4.2 并联箱式图 65
4.4.3 带状图 66
4.5 表格 68
4.5.1 生成表格 68
4.5.2 边际表格和相对频数 71
4.6 表格的图形显示 72
4.6.1 条形图 72
4.6.2 点图 74
4.6.3 饼图 75
4.7 练习题 76
第5章 单样本与双样本检验 77
5.1 单样本t检验 77
5.2 Wilcoxon符号秩检验 80
5.3 两样本t检验 82
5.4 比较方差 83
5.5 两样本Wilcoxon检验 84
5.6 配对t检验 85
5.7 配对Wilcoxon检验 86
5.8 练习题 87
第6章 回归与相关性 88
6.1 简单线性回归 88
6.2 残差与回归值 92
6.3 预测与置信带 95
6.4 相关性 98
6.4.1 皮尔逊相关系数 98
6.4.2 斯皮尔曼相关系数 99
6.4.3 肯德尔等级相关系数t 100
6.5 练习题 100
第7章 方差分析与Kruskal-Wallis检验 102
7.1 单因素方差分析 102
7.1.1 成对比较和多重检验 106
7.1.2 放宽对方差的假设 107
7.1.3 图像表示 108
7.1.4 Bartlett检验 109
7.2 Kruskal-Wallis检验 110
7.3 双因素方差分析 110
7.4 Friedman检验 114
7.5 回归分析中的方差分析表 114
7.6 练习题 115
第8章 表格数据 117
8.1 单比例 117
8.2 两个独立的比例 118
8.3 k比例,检验趋势 120
8.4 r ′ c表格 122
8.5 练习题 124
第9章 功效与样本容量的计算 126
9.1 功效计算原则 126
9.1.1 单样本t及配对样本t检验的功效 127
9.1.2 两样本t检验的功效 128
9.1.3 近似方法 128
9.1.4 比较比例的功效 129
9.2 两样本问题 129
9.3 单样本问题及配对样本检验 131
9.4 比例的比较 131
9.5 练习题 132
第 10章 数据处理的高 级技术 133
10.1 变量的重编码 133
10.1.1 cut函数 133
10.1.2 处理因子 135
10.1.3 日期的使用 136
10.1.4 多变量重编码 139
10.2 条件计算 140
10.3 合并与重构数据框 141
10.3.1 追加数据框 141
10.3.2 合并数据框 142
10.3.3 重塑数据框 144
10.4 数据的分组及分案例操作 146
10.5 时间分割 148
10.6 练习题 152
第 11章 多元回归 153
11.1 多维数据绘图 153
11.2 模型设定和模型输出 155
11.3 模型筛选 157
11.4 练习题 161
第 12章 线性模型 162
12.1 多项式回归 163
12.2 过原点的回归分析 165
12.3 设计矩阵与虚拟变量 166
12.4 组间的共线性 168
12.5 交互效应 172
12.6 可重复的双因素方差分析 172
12.7 协方差分析 173
12.7.1 图形描述 174
12.7.2 比较回归线 177
12.8 模型诊断 183
12.9 练习题 187
第 13章 逻辑回归 189
13.1 广义线性模型 190
13.2 表格化数据的逻辑回归 190
13.2.1 偏差表分析 195
13.2.2 与趋势检验之间的关联 196
13.3 似然剖面分析 197
13.4 让步比估计的表达 199
13.5 原始数据的逻辑回归 199
13.6 预测 201
13.7 模型检查 202
13.8 练习题 206
第 14章 生存分析 208
14.1 重要概念 208
14.2 生存对象 209
14.3 Kaplan-Meier估计 210
14.4 对数秩检验 213
14.5 Cox比例风险模型 214
14.6 练习题 216
第 15章 比率和泊松回归 217
15.1 基本思想 217
15.1.1 泊松分布 217
15.1.2 带有常数风险的生存分析 218
15.2 泊松模型的拟合 219
15.3 计算比率 223
15.4 带有常数强度的模型 226
15.5 练习题 230
第 16章 非线性曲线拟合 231
16.1 基本用法 232
16.2 寻找初值 233
16.3 自启动模型 238
16.4 剖面分析 240
16.5 更好地控制拟合算法 241
16.6 练习题 242
附录A 获取并安装R以及ISwR包 243
附录B ISwR中的数据集 246
附录C 摘要 272
附录D 练习题答案 283