登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』轻质夹层板结构的声振耦合理论(英文版)

書城自編碼: 2476729
分類: 簡體書→大陸圖書→工業技術一般工业技术
作者: 卢天健, 辛锋先
國際書號(ISBN): 9787030413222
出版社: 科学出版社
出版日期: 2014-10-20
版次: 1 印次: 1
頁數/字數: 356/443000
書度/開本: 16开 釘裝: 精装

售價:NT$ 1620

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
泉舆日志 幻想世界宝石生物图鉴
《 泉舆日志 幻想世界宝石生物图鉴 》

售價:NT$ 611.0
养育女孩 : 官方升级版
《 养育女孩 : 官方升级版 》

售價:NT$ 230.0
跨界:蒂利希思想研究
《 跨界:蒂利希思想研究 》

售價:NT$ 500.0
千万别喝南瓜汤(遵守规则绘本)
《 千万别喝南瓜汤(遵守规则绘本) 》

售價:NT$ 204.0
大模型启示录
《 大模型启示录 》

售價:NT$ 510.0
东法西渐:19世纪前西方对中国法的记述与评价
《 东法西渐:19世纪前西方对中国法的记述与评价 》

售價:NT$ 918.0
养育男孩:官方升级版
《 养育男孩:官方升级版 》

售價:NT$ 230.0
小原流花道技法教程
《 小原流花道技法教程 》

售價:NT$ 500.0

建議一齊購買:

編輯推薦:
《轻质夹层板结构的声振耦合理论(英文版)》涉及多个学科领域,面较广,所以读者群面也较大,可作为面向结构振动和声学工程专业的高年级学生教学用书和参考书,也可供相关专业的研究人员、工程技术人员参考。
內容簡介:
《轻质夹层板结构的声振耦合理论(英文版)》的内容主要包括:第一部分,双板空腔结构声振耦合特性理论与实验研究,主要针对高速机车、大型客机及高档居民楼上所采用的双层玻璃窗及双层壳体结构的声振耦合特性开展理论与实验研究;第二部分,外部流场作用下板壳结构声振耦合特性理论研究,重点考虑了飞机在巡航飞行状态时外部平均流对飞机喷气发动机产生的噪声从舱外传入舱内的物理过程;第三部分,正交加筋夹层板结构声振耦合特性理论研究,重点分析讨论了水面舰艇和潜水艇外壳结构经常使用的正交加筋夹层板结构的声辐射特性和结构传声特性;第四部分,填充吸声材料夹层板结构声振耦合特性研究及优化设计,主要理论研究了航空航天飞行器中常用到的层芯空腔填充多孔纤维吸声材料的加筋夹层板结构的声振耦合特性及其结构优化设计;第五部分,研究展望,结合国家重大项目发展需求,展望了复杂周期加筋板壳结构在外部声场及流场作用下的声振耦合特性未来的研究趋势,提出了值得进一步深入研究的几个问题。
目錄
1 Transmission of Sound Through Finite Multiple-Panel Partition
 1.1 Simply Supported Finite Double-Panel Partitions
1.1.1 Introduction
1.1.2 Vibroacoustic Theoretical Modeling
1.1.3 Mathematic Formulation and Solution
1.1.4 Convergence Check for Numerical Results
1.1.5 Model Validation
1.1.6 Effects of Air Cavity Thickness
1.1.7 Effects of Panel Dimensions
1.1.8 Effects of Incident Elevation Angle and Azimuth Angle
1.1.9 Conclusions
 1.2 Clamped Finite Double-Panel Partitions
1.2.1 Introduction
1.2.2 Modeling of the Vibroacoustic Coupled System
1.2.3 Model Validation
1.2.4 Finite Versus Infinite Double-Panel Partition
1.2.5 Effects of Panel Thickness on STL
1.2.6 Effects of Air Cavity Thickness on STL
1.2.7 Effects of Incident Angles on STL
1.2.8 Conclusions
1.2.9 Sound Transmission Measurements
1.2.10 Relationships Between Clamped and Simply Supported Boundary Conditions
1.2.11 Conclusions
 1.3 Clamped Finite Triple-Panel Partitions
1.3.1 Introduction
1.3.2 Dynamic Structural Acoustic Formulation
1.3.3 The Principle of Virtual Work
1.3.4 Determination of Modal Coefficients
1.3.5 Sound Transmission Loss
1.3.6 Model Validation
1.3.7 Physical Interpretation of STL Dips
1.3.8 Comparison Among Single-, Double-, and Triple-Panel Partitions with Equivalent Total Mass
1.3.9 Asymptotic Variation of STL Versus Frequency Curve from Finite to Infinite System
1.3.10 Effects of Panel Thickness
1.3.11 Effects of Air Cavity Depth
1.3.12 Concluding Remarks
 Appendices
Appendix A
Appendix B
 References
2 Vibroacoustics of Uniform Structures in Mean Flow
 2.1 Finite Single-Leaf Aeroelastic Plate
2.1.1 Introduction
2.1.2 Modeling of Aeroelastic Coupled System
2.1.3 Effects of Mean Flow in Incident Field
2.1.4 Effects of Mean Flow in Transmitted Field
2.1.5 Effects of Incident Elevation Angle in the Presence of Mean Flow on Both Incident Side and Transmitted Side
2.1.6 Conclusions
 2.2 Infinite Double-Leaf Aeroelastic Plates
2.2.1 Introduction
2.2.2 Statement of the Problem
2.2.3 Formulation of Plate Dynamics
2.2.4 Consideration of Fluid-Structure Coupling
2.2.5 Definition of Sound Transmission Loss
2.2.6 Characteristic Impedance of an Infinite Plate
2.2.7 Physical Interpretation for the Appearance of STL Peaks and Dips
2.2.8 Effects of Mach Number
2.2.9 Effects of Elevation Angle
2.2.10 Effects of Azimuth Angle
2.2.11 Effects of Panel Curvature and Cabin Internal Pressurization
2.2.12 Conclusions
 2.3 Double-Leaf Panel Filled with Porous Materials
2.3.1 Introduction
2.3.2 Problem Description
2.3.3 Theoretical Model
2.3.4 Validation of Theoretical Model
2.3.5 Influence of Porous Material and the Faceplates
2.3.6 Influence of Porous Material Layer Thickness
2.3.7 Influence of External Mean Flow
2.3.8 Influence of Incident Sound Elevation Angle
2.3.9 Influence of Sound Incident Azimuth Angle
2.3.10 Conclusion
 Appendix
Mass-Air-Mass Resonance
Standing-Wave Attenuation
Standing-Wave Resonance
Coincidence Resonance
 References
3 Vibroacoustics of Stiffened Structures in Mean Flow
 3.1 Noise Radiation from Orthogonally Rib-Stiffened Plates
3.1.1 Introduction
3.1.2 Theoretical Formulation
3.1.3 Effect of Mach Number
3.1.4 Effect of Incidence Angle
3.1.5 Effect of Periodic Spacings
3.1.6 Concluding Remarks
 3.2 Transmission Loss of Orthogonally Rib-Stiffened Plates
3.2.1 Introduction
3.2.2 Theoretical Formulation
3.2.3 Model Validation
3.2.4 Effects of Mach Number of Mean Flow
3.2.5 Effects of Rib-Stiffener Spacings
3.2.6 Effects of Rib-Stiffener Thickness and Height
3.2.7 Effects of Elevation and Azimuth Angles of Incident Sound
3.2.8 Conclusions
 Appendices
Appendix A
Appendix B
 References
4 Sound Transmission Across Sandwich Structures with Corrugated Cores
4.1 Introduction
4.2 Development of Theoretical Model
4.3 Effects of Core Topology on Sound Transmission Across the Sandwich Structure
4.4 Physical Interpretation for the Existence of Peaks and Dips on STL Curves
4.5 Optimal Design for Combined Sound Insulation and Structural Load Capacity
4.6 Conclusion
 References
5 Sound Radiation, Transmission of Orthogonally Rib-Stiffened Sandwich Structures
 5.1 Sound Radiation of Sandwich Structures
5.1.1 Introduction
5.1.2 Theoretical Modeling of Structural Dynamic Responses
5.1.3 Solutions
5.1.4 Far-Field Radiated Sound Pressure
5.1.5 Validation of Theoretical Modeling
5.1.6 Influences of Inertial Effects Arising from Rib-Stiffener Mass
5.1.7 Influence of Excitation Position
5.1.8 Influence of Rib-Stiffener Spacings
5.1.9 Conclusions
 5.2 Sound Transmission Through Sandwich Structures
5.2.1 Introduction
5.2.2 Analytic Formulation of Panel Vibration and Sound Transmission
5.2.3 The Acoustic Pressure and Continuity Condition
5.2.4 Solution of the Formulations with the Virtual Work Principle
5.2.5 Virtual Work of Panel Elements
5.2.6 Virtual Work of x-Wise Rib-Stiffeners
5.2.7 Virtual Work of y-Wise Rib-Stiffeners
5.2.8 Combination of Equations
5.2.9 Definition of Sound Transmission Loss
5.2.10 Convergence Check for Space-Harmonic Series Solution .
5.2.11 Validation of the Analytic Model
5.2.12 Influence of Sound Incident Angles
5.2.13 Influence of Inertial Effects Arising from Rib-Stiffener Mass
5.2.14 Influence of Rib-Stiffener Spacings
5.2.15 Influence of Airborne and Structure-Borne Paths
5.2.16 Conclusions
 Appendices
Appendix A
Appendix B
 References
6 Sound Propagation in Rib-Stiffened Sandwich Structures with Cavity Absorption
 6.1 Sound Radiation of Absorptive Sandwich Structures
6.1.1 Introduction
6.1.2 Structural Dynamic Responses to Time-Harmonic Point Force
6.1.3 The Acoustic Pressure and Fluid-Structure Coupling
6.1.4 Far-Field Sound-Radiated Pressure
6.1.5 Convergence Check for Numerical Solution
6.1.6 Validation of Theoretical Modeling
6.1.7 Influence of Air-Structure Coupling Effect
6.1.8 Influence of Fibrous Sound Absorptive Filling Material
6.1.9 Conclusions
6.2 Sound Transmission Through Absorptive Sandwich Structure
6.2.1 Introduction
6.2.2 Analytic Formulation of Panel Vibration and Sound Transmission
6.2.3 Application of the Periodicity of Structures
6.2.4 Solution by Employing the Virtual Work Principle
6.2.5 Model Validation
6.2.6 Effects of Fluid-Structure Coupling on Sound Transmission
6.2.7 Sound Transmission Loss Combined with Bending Stiffness and Structure Mass: Optimal Design of Sandwich
6.2.8 Conclusions
 Appendices
Appendix A
Appendix B
Appendix C
 References

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.