新書推薦:
《
成吉思汗传:看历代帝王将相谋略 修炼安身成事之根本
》
售價:NT$
280.0
《
爱丁堡古罗马史-罗马城的起源和共和国的崛起
》
售價:NT$
349.0
《
人生解忧:佛学入门四十讲
》
售價:NT$
490.0
《
在虚无时代:与马克斯·韦伯共同思考
》
售價:NT$
260.0
《
自然信息图:一目了然的万物奇观
》
售價:NT$
640.0
《
女性史:古代卷(真正意义上的女性大历史)
》
售價:NT$
560.0
《
跨代伴侣治疗
》
售價:NT$
440.0
《
心理治疗中的真意:心理治疗师的心灵之旅
》
售價:NT$
440.0
|
編輯推薦: |
一本易于理解、简洁直观的微积分入门指南;
包含近 200 道详细解答的例题和超过 300 道习题;
无须指数函数、对数函数或三角函数的知识储备。
|
內容簡介: |
本书是专为微积分初学者或非数学专业的学生所写的。对于既不需要数学微积分课程的严格要求,也不需要工程和物理学微积分课程的细节的学生来说,本书有恰到好处的内容和深度。本书分为5章,第1章是导语,介绍微积分是什么;第2章讲解极限,如何无限地接近却不等于一个数;第3章介绍导数,解决瞬时速度问题;第4章介绍导数的应用;第5章介绍积分。
本书适合于高中生、大学生和想学习微积分的数学爱好者。
|
關於作者: |
奥斯卡·E.费尔南德斯(Oscar E. Fernandez)是韦尔斯利学院的数学副教授。他是《日常微积分》和《幸福微积分》的作者(均由普林斯顿大学出版社出版)。
|
目錄:
|
第 1 章 微积分导论
1.1 何为“微积分” 1
1.2 极限:微积分理论严格化的基石 4
1.3 促使微积分诞生的三大难题 6
第 2 章 极限:如何无限逼近(却始终无法达到)
2.1 单侧极限:图像方法 9
2.2 单侧极限的存在性 12
2.3 双侧极限 15
2.4 单点连续性 16
2.5 区间上连续函数 18
2.6 极限运算法则 23
2.7 极限计算——代数方法 26
2.8 自变量趋于无穷大时的函数极限 31
2.9 无穷大量 35
2.10 结束语 39
本章习题 39
第 3 章 导数:变化率的定量描述
3.1 瞬时速度问题 45
3.2 切线斜率问题——单点导数 49
3.3 导数:瞬时变化率 52
3.4 可导性:导数存在性判别 53
3.5 几何方式求导数 55
3.6 代数方式求导数 57
3.7 求导法则:基本规则 62
3.8 求导法则:幂式求导 63
3.9 求导法则:积式求导 66
3.10 求导法则:链式法则 67
3.11 求导法则:商式求导 70
3.12 超越函数的导数(选读) 72
3.13 高阶导数 77
3.14 结束语 78
本章习题 79
第 4 章 导数的应用
4.1 相关变化率 87
4.2 线性主部 94
4.3 函数单调性的判定 99
4.4 最优化理论:极值 105
4.5 最优化理论:最值 107
4.6 最优化理论的应用 113
4.7 二阶导数反映的函数信息 119
4.8 结束语 124
本章习题 125
第 5 章 积分:变化量的累加
5.1 距离视为面积 134
5.2 莱布尼茨的积分符号 138
5.3 微积分基本定理 139
5.4 原函数和求值定理 143
5.5 不定积分 145
5.6 积分的性质 148
5.7 带符号的净面积 150
5.8 超越函数的积分(选读) 152
5.9 换元积分法 153
5.10 积分的应用 159
5.11 结束语 163
本章习题 164
附录 A:代数与几何知识回顾
附录 B:函数知识回顾
附录 C:其他应用实例
章节与附录习题(部分)答案
后 记
致 谢
|
|