登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』自组织增量学习神经网络

書城自編碼: 4021726
分類: 簡體書→大陸圖書→教材研究生/本科/专科教材
作者: 申富饶
國際書號(ISBN): 9787121474385
出版社: 电子工业出版社
出版日期: 2024-03-01

頁數/字數: /
釘裝: 平塑

售價:NT$ 250

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
剑桥日本戏剧史(剑桥世界戏剧史译丛)
《 剑桥日本戏剧史(剑桥世界戏剧史译丛) 》

售價:NT$ 918.0
中国高等艺术院校精品教材大系:材料的时尚表达??服装创意设计
《 中国高等艺术院校精品教材大系:材料的时尚表达??服装创意设计 》

售價:NT$ 347.0
美丽与哀愁:第一次世界大战个人史
《 美丽与哀愁:第一次世界大战个人史 》

售價:NT$ 653.0
国家豁免法的域外借鉴与实践建议
《 国家豁免法的域外借鉴与实践建议 》

售價:NT$ 857.0
大单元教学设计20讲
《 大单元教学设计20讲 》

售價:NT$ 347.0
儿童自我关怀练习册:做自己最好的朋友
《 儿童自我关怀练习册:做自己最好的朋友 》

售價:NT$ 316.0
高敏感女性的力量(意大利心理学家FSP博士重磅力作。高敏感是优势,更是力量)
《 高敏感女性的力量(意大利心理学家FSP博士重磅力作。高敏感是优势,更是力量) 》

售價:NT$ 286.0
元好问与他的时代(中华学术译丛)
《 元好问与他的时代(中华学术译丛) 》

售價:NT$ 398.0

內容簡介:
本书介绍了自组织增量学习神经网络及其在人工智能领域的应用。神经网络是一种模拟生物神经系统的人工智能技术,具有强大的数据处理能力和学习能力。自组织增量学习神经网络是一种具有高度自组织结构和增量学习能力的神经网络。与传统机器学习方法相比,自组织增量学习神经网络有更强的灵活性和适应性,能够更好地适应动态环境和解决复杂的问题。自组织增量学习神经网络在多个领域有着广泛的应用,包括机器人智能系统、人脸识别、图像处理、场景理解、语音识别、姿势识别、股票预测等。使用自组织增量学习神经网络,这些应用能够实现更高效、更灵活的学习和决策能力。 本书适合人工智能领域的研究人员和高等院校计算机科学与技术、人工智能等专业研究生阅读。
關於作者:
申富饶,教授,南京大学人工智能学院院长助理,2006年博士毕业于东京工业大学智能系统科学专业,南京大学量子物理与人工智能特聘教授,南京大学科沃斯讲席教授,长期从事神经网络、数据分析、机器人智能等的教学与科研工作。
目錄
第1 章数学基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 线性代数基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 向量基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 矩阵基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 特征值和特征向量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.1.4 特征值分解和奇异值分解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 概率统计基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 基础概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 概率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 全概率和贝叶斯公式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.2.4 随机变量及其分布. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.5 二维随机变量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.6 数学期望和方差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.7 协方差和相关系数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.8 最大似然估计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 距离度量基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 度量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 向量范数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.3 度量与向量范数的关系. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
1.3.4 其他距离度量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 信息论基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 信息量和信息熵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.2 联合熵和条件熵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.3 KL 散度和JS 散度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.4 交叉熵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5 本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
第2 章自组织神经网络的起源与发展. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 自组织神经网络的发展历史. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 自组织映射网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
2.2.1 自组织映射网络的基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
2.2.2 自组织映射网络的扩展. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
2.3 自适应共振理论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2.3.1 自适应共振理论的基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2.3.2 ART 网络的拓展. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 生长型神经气. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
第3 章自组织增量学习神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 SOINN 的网络结构与学习流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 SOINN 的原理分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 神经元学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 拓扑学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.3 自适应阈值. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4 节点激活的阈值. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.5 网络的“定期检查” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.6 SOINN 完整算法描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
第4 章SOINN 的改进算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.1 E-SOINN 算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.1.1 E-SOINN 算法描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 E-SOINN 算法的性能测试. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Adjusted SOINN 分类器算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 ASC 算法描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
4.2.2 ASC 算法的性能测试. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 LB-SOINN 算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 LB-SOINN 算法描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 LB-SOINN 算法的性能测试. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 LD-SOINN 算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.1 LD-SOINN 算法描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.2 LD-SOINN 算法的性能测试. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 DenSOINN 算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.1 DenSOINN 算法描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
4.5.2 DenSOINN 算法的性能测试. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6 本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
第5 章SOINN 的应用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1 聚类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.1 并行计算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1.2 异构数据的处理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 计算机视觉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.