Bassem R. Mahafza是雷达学科世界范围内公认的专家,具有30多年的研究经验,在雷达技术、雷达设计与分析(包括所有传感器子部件)、雷达仿真和模型设计、雷达特征和雷达算法开发(特别是在先进杂波抑制技术和对抗方面)等领域有丰富的成果。Bassem R. Mahafza是雷达学科世界范围内公认的专家,具有30多年的研究经验,在雷达技术、雷达设计与分析(包括所有传感器子部件)、雷达仿真和模型设计、雷达特征和雷达算法开发(特别是在先进杂波抑制技术和对抗方面)等领域有丰富的成果。
目錄:
Chapter 1 Signals and Systems - Refresher 1.1 Signal Classification 1.2 Signal Expansion Functions 1.2.1 Fourier Series Expansion 1.2.2 Properties of the Fourier Series 1.3 Fourier Transform 1.3.1 Fourier Transform Pairs and Properties Tables 1.4 Systems Classification 1.4.1 Linear and Nonlinear Systems 1.4.2 Time Invariant and Time Varying Systems 1.4.3 Stable and Nonstable Systems 1.4.4 Causal and Noncausal Systems 1.5 Spectra of Common Radar Signals 1.5.1 Continuous Wave Signal 1.5.2 Finite Duration Pulse Signal 1.5.3 Periodic Pulse Signal 1.5.4 Finite Duration Pulse Train Signal 1.6 Convolution Integral 1.7 Correlation 1.7.1 Correlation Coefficient 1.7.2 Correlation Integral - Energy Signals 1.7.3 Relationship between Convolution and Correlation Integrals 1.7.4 Effect of Time Translation on the Correlation Function 1.7.5 Correlation Function Properties 1.7.6 Correlation Integral - Power Signals 1.7.7 Energy and Power Spectrum Densities 1.7.8 Correlation Function for Periodic Signals 1.8 Bandpass Signals 1.8.1 Analytic Signal (Pre-Envelope) 1.8.2 Pre-Envelope and Complex Envelope of Bandpass Signals 1.8.3 Spectrum for a Linear Frequency Modulation Signal 1.9 Discrete Time Systems and Signals 1.9.1 Sampling Theorem 1.10 Z-Transform 1.11 Discrete Fourier Transform 1.11.1 Discrete Power Spectrum 1.11.2 Spectral Leakage and Fold-Over 1.11.3 Windowing Techniques 1.11.4 Decimation and Interpolation 1.12 Random Variables and Random Processes 1.12.1 Random Variables 1.12.2 Multivariate Gaussian Random Vector 1.12.3 Complex Multivariate Gaussian Random Vector 1.12.4 Rayleigh Random Variables 1.12.5 The Chi-Square Random Variables 1.12.6 Random Processes 1.12.7 Gaussian Random Process 1.12.8 Lowpass Gaussian Random Processes 1.12.9 Bandpass Gaussian Random Processes 1.12.10 Envelope of a Bandpass Gaussian Process Chapter 2 Radar Systems Basics 2.1 Radar Block Diagram 2.2 Radar Specific Terms 2.2.1 Range 2.2.2 Unambiguous Range 2.2.3 Range Resolution 2.2.4 Doppler Frequency 2.3 Radar Systems Classifications and Bands 2.3.1 High Frequency and Very HF Radars (A- and B-Bands) 2.3.2 Ultra High Frequency Radars (C-Band) 2.3.3 L-Band Radars (D-Band) 2.3.4 S-Band Radars (E- and F-Bands) 2.3.5 C-Band Radar (G-Band) 2.3.6 X- and Ku-Band Radars (I- and J-Bands) 2.3.7 K- and Ka-Band Radars (J- and K-Bands) 2.3.8 Millimeter Wave Radars (V- and W-Bands) 2.4 Decibel Arithmetic 2.5 Electromagnetic Waves (RF Waves) 2.5.1 Polarization 2.6 Coherence 2.7 Radar Antenna 2.7.1 Antenna Directivity and Gain 2.7.2 Antenna Power Radiation Pattern 2.7.3 Near and Far Fields 2.7.4 Beam Shape Loss and Scan Loss 2.7.5 Number of Beam Positions 2.8 Radar Cross-Section 2.8.1 RCS Prediction Methods 2.9 Radar Measurement Errors Chapter 3 Radar Equation 3.1 Radar Range Equation 3.1.1 Maximum Detection Range 3.1.2 Blake Chart 3.1.3 Low Pulse Repetition Frequency Radar Equation 3.1.4 High PRF Radar Equation 3.1.5 Surveillance Radar Equation 3.2 Bistatic Radar Equation 3.3 Radar Losses 3.3.1 Transmit and Receive Losses 3.3.2 Antenna Pattern Loss and Scan Loss 3.3.3 Atmospheric Loss 3.3.4 Collapsing Loss 3.3.5 Processing Loss 3.4 Noise Figure 3.5 Continuous Wave Radars 3.5.1 CW Radar Equation 3.5.2 Frequency Modulation 3.5.3 Linear Frequency Modulated CW Radar 3.5.4 Multiple Frequency CW Radar Chapter 4 Radar Propagation Medium 4.1 Earth’s Impact on the Radar Equation 4.2 Earth’s Atmosphere 4.3 Atmospheric Models 4.3.1 Index of Refraction in the Troposphere 4.3.2 Index of Refraction in the Ionosphere 4.3.3 Mathematical Model for Computing Refraction 4.3.4 Stratified Atmospheric Refraction Model 4.4 Four-Third Earth Model 4.4.1 Target Height Equation 4.5 Ground Reflection 4.5.1 Smooth Surface Reflection Coefficient 4.5.2 Divergence 4.5.3 Rough Surface Reflection 4.5.4 Total Reflection Coefficient 4.6 Pattern Propagation Factor 4.6.1 Flat Earth 4.6.2 Spherical Earth 4.7 Diffraction Chapter 5 Radar Electronic Warfare Techniques 5.1 Electronic Warfare Classes 5.2 Passive Jamming Techniques 5.3 Radar Equation with Jamming 5.3.1 Self-Protection Jamming Radar Equation 5.3.2 Support Jamming Radar Equation 5.3.3 Range Reduction Factor 5.4 Noise (Denial) Jamming Techniques 5.4.1 Barrage Noise Jamming 5.4.2 Spot Noise and Sweep Spot Noise Jamming 5.5 Deceptive Jamming 5.6 Electronic Counter-Counter Measure Techniques 5.6.1 Receiver Protection Techniques 5.6.2 Jamming Avoidance and Exploitation Techniques 5.7 Case Studies 5.7.1 Hypothetical Victim-Radar Parameters 5.7.2 Self-Screening Jamming Case 5.7.3 Support Jamming Case Chapter 6 Matched Filter Receiver 6.1 Matched Filtering 6.1.1 Matched Filter Impulse Response 6.1.2 The Replica 6.1.3 Mean and Variance of the Matched Filter Output 6.2 General Formula for the Output of the Matched Filter 6.2.1 Stationary Target Case 6.2.2 Moving Target Case 6.3 Waveform Resolution 6.3.1 Range Resolution 6.3.2 Doppler Resolution 6.3.3 Combined Range and Doppler Resolution 6.4 Range and Doppler Uncertainty 6.4.1 Range Uncertainty 6.4.2 Doppler (Velocity) Uncertainty 6.5 Combined Range-Doppler Uncertainty 6.6 Target Parameter Estimation 6.6.1 What is an Estimator 6.6.2 Amplitude Estimation 6.6.3 Phase Estimation 6.7 Pulse Compression 6.7.1 Time-Bandwidth Product 6.7.2 Radar Equation with Pulse Compression 6.7.3 Basic Principle of Pulse Compression 6.7.4 Correlation Processor 6.7.5 Stretch Processor 6.7.6 Stepped Frequency Waveforms 6.7.7 Effect of Target Velocity on Pulse Compression Chapter 7 Radar Ambiguity Function 7.1 Ambiguity Function Definition 7.2 Effective Signal Bandwidth and Duration 7.3 Single Pulse Ambiguity Function 7.3.1 Time-Bandwidth Product 7.3.2 Ambiguity Function 7.4 LFM Ambiguity Function 7.4.1 Time-Bandwidth Product 7.4.2 Ambiguity Function 7.5 Coherent Pulse Train Ambiguity Function 7.5.1 Time-Bandwidth Product 7.5.2 Ambiguity Function 7.6 Pulse Train with LFM Ambiguity Function 7.7 Stepped Frequency Waveform Ambiguity Function 7.8 Nonlinear Frequency Modulation 7.8.1 Concept of Stationary Phase 7.8.2 Frequency Modulated Waveform Spectrum Shaping 7.9 Ambiguity Diagram Contours 7.9.1 Range-Doppler Coupling in LFM Signals - Revisited 7.10 Discrete Code Signal Representation 7.10.1 Pulse-Train Codes 7.11 Phase Coding 7.11.1 Binary Phase Codes 7.11.2 Polyphase Codes 7.12 Frequency Codes Chapter 8 Target Detection Part I - Single Pulse Detection 8.1 Single Pulse with Known Parameters 8.2 Single Pulse with Known Amplitude and Unknown Phase 8.2.1 Probability of False Alarm 8.2.2 Probability of Detection Part II - Detection of Fluctuating Targets 8.3 Pulse Integration 8.3.1 Coherent Integration 8.3.2 Noncoherent Integration 8.3.3 Improvement Factor and Integration Loss 8.3.4 Probability of False Alarm Formulation for a Square Law Detector 8.3.5 Square Law Detection 8.4 Probability of Detection Calculation 8.4.1 Detection of Swerling 0 (Swerling V) Targets 8.4.2 Detection of Swerling I Targets 8.4.3 Detection of Swerling II Targets 8.4.4 Detection of