新書推薦:
《
鸣沙丛书·大风起兮:地方视野和政治变迁中的“五四”(1911~1927)
》
售價:NT$
454.0
《
海洋、岛屿和革命:当南方遭遇帝国(文明的另一种声音)
》
售價:NT$
485.0
《
铝合金先进成型技术
》
售價:NT$
1214.0
《
英雄之旅:把人生活成一个好故事
》
售價:NT$
398.0
《
分析性一体的涌现:进入精神分析的核心
》
售價:NT$
556.0
《
火枪与账簿:早期经济全球化时代的中国与东亚世界
》
售價:NT$
352.0
《
《全面与进步跨太平洋伙伴关系协定》国有企业条款研究
》
售價:NT$
449.0
《
银行业架构网络BIAN(全球数字化时代金融服务业框架)(数字化转型与创新管理丛书)
》
售價:NT$
449.0
|
編輯推薦: |
人工智能经典教材 国家级精品课程“人工智能”配套教材、国家级双语示范课程“人工智能”配套教材、国家级精品资源共享课程“人工智能”配套教材、曾获普通高等学校“十一五”国家级规划教材和“十二五”国家级规划教材,第2版曾获国家 科技进步奖一等奖。
以作者提出的人工智能核心要素和学科体系为指导,构建本书的基本架构,突出基于知识的人工智能和基于数据的人工智能,加强人工智能算法与编程,新增人工智能的算力,彰显人工智能新内容和新水平。提供全面修订的课程电子课件(PPT)便于教师备课和授课,拥有丰富的人工智能课程网络教学资源有利于课后复习和提升。
|
內容簡介: |
《人工智能及其应用(第7版)》全面系统介绍了人工智能的基本原理及其应用,涉及人工智能概述、基于知识的人工智能、基于数据的人工智能、人工智能的算法与编程、人工智能的计算能力、人工智能发展展望及人工智能的应用。第1章叙述人工智能的定义与发展,提出人工智能的核心要素、学科体系和系统分类。第2章~第4章介绍知识表示、知识搜索与推理、基于知识的机器学习。第5章~第7章介绍群体智能与进化计算、数据处理和人工神经网络、基于数据的机器学习。第8章~第9章介绍逻辑型人工智能编程语言、解释型语言和深度学习开源框架。第10 章介绍人工智能的算力及架构。第11章~第13章介绍专家系统、智能规划、机器感知。第14章~第15章内容涉及人工智能伦理与安全及人工智能的发展趋势。书中每章均配备习题并对要点进行总结,加深读者对原理及算法的理解,为进一步深入学习人工智能打下坚实的基础。《人工智能及其应用(第7版)》可作为高等院校本科生和研究生的人工智能课程教材,也可供从事人工智能研究与开发的相关人员阅读参考。
|
關於作者: |
蔡自兴,IEEE院士和IEEE终身院士(Fellow)、国际导航与运动控制科学院院士、纽约科学院院士、CAAI Fellow、AAIA Feloow、CFF Fellow、CAA Fellow,联合国专家,中南大学教授、博士生导师,湖南省自兴人工智能研究院首席科学家。首届全国高校国家级教学名师奖、吴文俊人工智能科技奖成就奖、徐特立教育奖、宝钢全国优秀教师奖特等奖获得者。历任第八届湖南省政协副主席和全国政协第九届和第十届委员会委员,兼任中国人工智能学会副理事长及智能机器人专业委员会创会主任、中国自动化学会理事、中国计算机学会人工智能与模式识别专业委员会委员、IEEE计算智能学会评奖委员会委员和IEEE CIS进化计算技术委员会委员等。已在国内外编著出版专著和教材60多部(版),发表论文1000多篇,他引数万次。主持国家级精品课程、国家级精品资源共享课程、国家级教学团队等国家 质量工程项目8项。是我国人工智能、智能控制、机器人学诸学科的学术带头人之一,被誉为“中国人工智能教育第一人”“中国智能机器人学科创始人”和“中国智能控制奠基者”。
刘丽珏, 中南大学自动化学院副教授,2008年获中南大学计算机应用技术博士学位。广西人工智能学会常务理事、CAAI会员、湖南省人工智能学会会员,国家级精品课程“人工智能”主讲教师和国家级视频公开课“人工智能PK人类智能”讲座教授及“智能科学基础系列课程”国家级教学团队成员。研究兴趣为智慧医疗、人工智能和机器学习等。
陈白帆, 中南大学自动化学院副教授。2009年获中南大学计算机应用技术博士学位,2015年美国德州农工大学访问学者。湖南省人工智能学会副秘书长,IEEE会员和CAAI会员。 “智能科学系列课程” 国家级教学团队成员,国家精品课程和国家精品资源共享课程《人工智能》主讲教师。研究方向为人工智能、移动机器人环境感知与定位、机器视觉等。
蔡昱峰, 高级工程师,高级经济师。湖南自兴人工智能科技集团董事长,中南大学工业电气自动化学士,香港科技大学工商管理硕士。湖南省工商联执委、湖南省人工智能学会副理事长。带领公司荣获国家高新技术企业、小巨人企业等称号及工信部人工智能与实体经济深度融合创新项目及未来医疗100强中国数字医疗榜等。研究方向为智慧医疗。
|
目錄:
|
第1章绪论
1.1人工智能的定义与发展
1.1.1人工智能的定义
1.1.2人工智能的起源与发展
1.1.3中国人工智能的发展
1.2人工智能的核心要素、学科体系和系统分类
1.2.1人工智能的核心要素
1.2.2人工智能的学科体系
1.2.3人工智能系统的分类
1.3人工智能的研究目标和内容
1.3.1人工智能的研究目标
1.3.2人工智能研究的基本内容
1.4人工智能的研究与应用领域
1.5本书概要
1.6小结
习题1
第1篇基于知识的人工智能
第2章知识表示方法
2.1状态空间表示
2.1.1问题状态描述
2.1.2状态图示法
2.2问题归约表示
2.2.1问题归约描述
2.2.2与或图表示
2.3谓词逻辑表示
2.3.1谓词演算
2.3.2谓词公式
2.3.3置换与合一
2.4语义网络表示
2.4.1二元语义网络的表示
2.4.2多元语义网络的表示
2.4.3语义网络的推理过程
2.5本体技术
2.5.1本体的概念
2.5.2本体的组成与分类
2.5.3本体的建模
2.6知识图谱
2.6.1知识图谱的定义与架构
2.6.2知识图谱的关键技术
2.6.3知识图谱的应用领域
2.7小结
习题2
第3章知识搜索与推理
3.1图搜索策略
3.2盲目搜索
3.2.1宽度优先搜索
3.2.2深度优先搜索
3.2.3等代价搜索
3.3启发式搜索
3.3.1启发式搜索策略和估价函数
3.3.2有序搜索
3.3.3A*算法
3.4消解原理
3.4.1子句集的求取
3.4.2消解推理规则
3.4.3含有变量的消解式
3.4.4消解反演求解过程
3.5规则演绎系统
3.5.1正向规则演绎系统
3.5.2逆向规则演绎系统
3.5.3双向规则演绎系统
3.6不确定性推理
3.6.1不确定性的表示与度量
3.6.2不确定性的算法
3.7概率推理
3.7.1概率的基本性质和计算公式
3.7.2概率推理方法
3.8主观贝叶斯方法
3.8.1知识不确定性的表示
3.8.2证据不确定性的表示
3.8.3主观贝叶斯方法的推理过程
3.9小结
习题3
第4章基于知识的机器学习
4.1机器学习的定义和发展历史
4.1.1机器学习的定义
4.1.2机器学习的发展史
4.2机器学习的主要策略与基本结构
4.2.1机器学习的主要策略
4.2.2机器学习系统的基本结构
4.3归纳学习
4.3.1归纳学习的模式和规则
4.3.2归纳学习方法
4.4类比学习
4.4.1类比推理和类比学习形式
4.4.2类比学习过程与研究类型
4.5解释学习
4.5.1解释学习过程和算法
4.5.2解释学习举例
4.6强化学习
4.6.1强化学习概述
4.6.2Q学习
4.7小结
习题4
第2篇基于数据的人工智能
第5章群体智能与进化计算
5.1粒群优化算法
5.1.1群体智能和粒群优化概述
5.1.2粒群优化算法
5.2蚁群算法
5.2.1蚁群算法理论
5.2.2蚁群算法的研究与应用
5.3进化算法与遗传算法
5.3.1进化算法原理
5.3.2进化算法框架
5.3.3遗传算法的编码与解码
5.3.4遗传算法的遗传算子
5.3.5遗传算法的执行过程
5.3.6遗传算法的执行实例
5.4小结
习题5
第6章数据处理和人工神经网络
6.1数据处理概述
6.1.1数据类型
6.1.2数据预处理
6.1.3特征工程
6.2人工神经网络
6.2.1人工神经网络研究的进展
6.2.2人工神经网络的基本结构
6.3神经网络学习
6.3.1基于反向传播网络的学习
6.3.2基于Hopfield网络的学习
6.4小结
习题6
第7章基于数据的机器学习
7.1线性回归
7.2决策树
7.2.1决策树的模型与学习
7.2.2特征选择
7.2.3决策树的生成算法
7.2.4决策树的剪枝
7.3支持向量机
7.3.1间隔与支持向量
7.3.2对偶问题
7.3.3软间隔与正则化
7.3.4核函数
7.4集成学习
7.4.1随机森林
7.4.2Adaboost算法
7.5聚类
7.5.1距离计算
7.5.2k均值聚类
7.5.3样例说明
7.6深度学习
7.6.1深度学习的定义与特点
7.6.2深度学习的常用模型
7.6.3深度学习的总结与展望
7.7小结
习题7
第3篇人工智能的算法与编程
第8章逻辑型人工智能编程语言
8.1逻辑型编程语言概述
8.2LISP语言
8.2.1LISP的特点和数据结构
8.2.2LISP的基本函数
8.2.3递归和迭代
8.3PROLOG语言
8.3.1PROLOG语法与数据结构
8.3.2PROLOG程序设计原理
8.4小结
习题8
第9章解释型语言和深度学习开源框架
9.1Python语言
9.1.1Python 简介
9.1.2Python的基本语法
9.1.3Python第三方开源工具包
9.2深度学习框架
9.2.1深度学习框架的发展
9.2.2深度学习开源框架比较
9.2.3深度学习框架基本功能
9.3小结
习题9
第4篇人工智能的计算能力
第10章人工智能的算力及架构
10.1人工智能算力的定义、分类和评估
10.1.1人工智能算力的定义
10.1.2人工智能算力和芯片的分类
10.1.3人工智能算力的评估
10.2人工智能芯片的发展
10.2.1人工智能芯片的发展历史
10.2.2人工智能芯片的发展态势
10.3人工智能算力网络
10.3.1人工智能算力网络的定义和特征
10.3.2人工智能算力网络的基本架构和工作机制
10.3.3人工智能算力网络的关键技术
10.3.4人工智能算力网络应用示例
10.4普适人工智能算力网络
10.4.1普适人工智能算力网络的基本架构
10.4.2普适人工智能算力网络的应用示例
10.5小结
习题10
第5篇人工智能的研究与应用领域
第11章专家系统
11.1专家系统概述
11.1.1专家系统的定义与特点
11.1.2专家系统的结构和建造步骤
11.2基于规则的专家系统
11.2.1基于规则的专家系统的工作模型和结构
11.2.2基于规则的专家系统的特点
11.3基于模型的专家系统
11.3.1基于模型的专家系统的提出
11.3.2基于神经网络的专家系统
11.4基于Web的专家系统
11.4.1基于Web的专家系统的结构
11.4.2基于Web的专家系统的实例
11.5智慧医疗诊断系统
11.5.1智慧医疗诊断系统与专家系统
11.5.2智慧医疗诊断系统的一般架构和流程
11.5.3智慧医疗诊断系统示例
11.6小结
习题11
第12章智能规划
12.1智能规划概述
12.1.1规划的概念和作用
12.1.2规划的分类
12.2任务规划
12.2.1积木世界的机器人规划
12.2.2基于消解原理的规划
12.2.3分层规划
12.2.4基于专家系统的规划
12.3路径规划
12.3.1机器人路径规划的主要方法和发展趋势
12.3.2基于免疫进化和示例学习的机器人路径规划
12.3.3基于蚁群算法的机器人路径规划
12.4移动机器人导航
12.4.1移动机器人导航的主要方法
12.4.2移动机器人导航的发展趋势
12.4.3基于机器学习的机器人导航
12.5轨迹规划简介
12.6小结
习题12
第13章机器感知
13.1计算机视觉
13.1.1图像工程概述
13.1.2图像采集和处理
13.1.3图像分类
13.1.4目标检测与跟踪
13.1.5图像分割
13.1.6图像理解
13.2自然语言理解
13.2.1自然语言理解概述
13.2.2自然语言理解研究的基本方法和进展
13.2.3词法分析
13.2.4句法分析
13.2.5语义分析
13.2.6文本的自动翻译——机器翻译
13.2.7自然语言理解系统的主要模型
13.2.8自然语言理解应用实例ChatGPT
13.3语音识别
13.3.1语音识别技术的发展过程
13.3.2语音识别基本原理
13.3.3语音识别关键技术和方法
13.3.4语音识别技术展望
13.4基于深度学习的自然语言处理
13.4.1基于深度学习的语音处理技术
13.4.2基于深度学习的其他自然语言处理技术
13.4.3基于深度学习的自然语言处理示例
13.5小结
习题13
第6篇人工智能展望
第14章人工智能的效益与安全
14.1人工智能的巨大效益
14.1.1人工智能对经济、科技和文教的影响
14.1.2人工智能对社会、生态和健康的影响
14.2人工智能的安全问题
14.3小结
习题14
第15章人工智能的发展趋势
15.1快速发展的人工智能产业化
15.1.1人工智能产业化的主要领域
15.1.2人工智能产业化的现状
15.1.3人工智能产业化的发展趋势
15.2人工智能技术的深度融合
15.2.1人工智能知识和数据的深度融合
15.2.2机器学习中人工智能技术的融合
15.2.3深度强化学习中人工智能技术的融合
15.2.4深度学习与传统人工智能技术的融合
15.3小结
习题15
结束语
参考文献
索引
|
內容試閱:
|
人类的进化归根结底是智能的进化,而智能反过来又为人类的进一步进化服务。我们学习与研究人工智能、智能系统和智能机器等,其目的就在于创造和应用智能技术和智能系统为人类进步服务。因此,可以说,对人工智能科技的钟情、期待、开发和应用,是科技发展和人类进步的必然。
国际上人工智能研究作为一门前沿和交叉学科,伴随着世界社会进步和科技发展的步伐,与时俱进,在过去60多年中已取得长足进展。在国内,人工智能已得到迅速传播与发展,并促进其他学科的发展。2016年3月AlphaGo与李世石的国际象棋人机大战将人工智能的关注度推至前所未有的高度,引发一轮新的人工智能研究和创业高潮。许多国家竞相制订人工智能发展战略,极大地推动了人工智能的发展。2022年11月30日OpenAI公司发布了一种基于深度学习的自然语言处理技术,一款聊天机器人程序ChatGPT。它是在大型语料库上训练出来的一个深度学习模型,可以模拟人类的自然语言交流,具有十分广泛的应用前景和潜力。ChatGPT催生了又一轮人工智能研究和创业热潮,为各个领域的数字化和智能化进程提供强大的支持和帮助,将人们对人工智能的关注度推向一个新的高度。
经过一年多的修订和编辑,本书第7版终于和读者见面了。
与第6版相比,本书第7版进行了较大的更新。第一,以作者新近提出的人工智能学科体系思想为指导,构建全书崭新的人工智能架构和内容,反映国内外人工智能的最新发展趋势和科技内涵,体现出作者对人工智能学科的独特见解。第二,注重创新,用较大篇幅介绍了人工智能的先进研究方法,特别是一些新技术和交叉技术的应用。例如,知识图谱、深度学习算法、语音识别、智慧医疗和自然语言处理等。其中,用两章讨论人工智能的算法与编程,人工智能的算力架构也是首次设立专章讨论。此外还深入探讨人工智能的伦理道德和安全、人工智能技术的深度融合和人工智能产业化的发展趋势等。第三,内容系统全面,既包括传统人工智能的基础理论与技术,又涉及数据智能的基本原理与方法,全面反映人工智能的发展历史和科技精髓,能够较好地满足不同层次读者的学习需求。第四,理论与实践高度融合,既有理论、技术和方法的阐述,又有许多应用实例的介绍,有助于读者对人工智能理论方法的深入理解及其应用开发。
本书第7版介绍了人工智能的基本原理及其应用,涉及人工智能概述、基于知识的人工智能、基于数据的人工智能、人工智能的算法与编程、人工智能的算力架构、人工智能的应用及人工智能展望等内容。全书共15章。第1章叙述人工智能的定义与发展,提出人工智能的核心要素、学科体系和系统分类,阐明人工智能的研究目标和研究内容,概括人工智能的研究与应用领域。第1篇为基于知识的人工智能,含知识表示方法、知识推理技术和基于知识的机器学习3章。第2篇为基于数据的人工智能,含数据处理概述、群体智能和进化计算、基于数据的机器学习3章。第3篇为人工智能的算法与编程,含逻辑型人工智能编程语言、解释型语言和深度学习开源框架2章。第4篇为人工智能的计算能力,含人工智能的算力及架构1章。第5篇为人工智能的研究和应用领域,含专家系统、智能规划和机器感知3章,机器感知又包括计算机视觉、自然语言理解和语音识别3部分。第6篇为人工智能展望,含人工智能伦理与安全、人工智能的发展趋势2章。
本书第7版修订任务的分工如下: 蔡自兴负责第1章至第5章、第6章(除6.1节外)、第8章、第11章(除11.6节外)、第12章、第13章(除13.1节外)、第14章和第15章,以及7.6节和13.2节等,并承担全书统稿、审阅、修改、校对和通信等任务。刘丽珏负责第7章(除7.6节外)和6.1节。陈白帆负责第13章(除13.2节外)和9.2节。蔡昱峰负责第10章和11.6节。
承蒙广大读者厚爱,本书被1000多所院校用作教材或教学参考书。我国科技教育界的许多领导和专家以及一些外国教授,长期以来对本书一直给予充分肯定。时任国务委员兼国家科委主任、中国科学院院士和中国工程院院士宋健教授,在极其繁忙的国务活动中,曾于1988年2月亲笔致函蔡自兴同志,对本书给予高度评价,体现出他对发展我国人工智能的高度关注和对作者的热诚鼓励。在本书修订过程中,得到许多专家和读者的热情支持。 “人民科学家”国家荣誉称号获得者吴文俊院士为本书提供了长篇代序,赞许本书的贡献。中国科学院院士、清华大学李衍达教授在百忙中分别为本书第2版、第3版和第4版作序,为本书增添光彩。谨向诸位领导、专家和广大读者表示诚挚的感谢。
我特别感激和怀念我的导师、国际模式识别之父、美国国家工程科学院院士傅京孙先生和我们的老师、指导者、中国科学院院士常迵先生。他们不但为本书的编著提供了悉心指导和有力帮助,而且为本书获得公开出版做出了巨大贡献。
我们还要衷心感谢中南大学、清华大学、湖南自兴智慧医疗有限公司和清华大学出版社有关领导、专家和编辑。本书责任编辑孙亚楠老师也为本书第7版的编辑付出了辛勤劳动,贡献出智慧。如果没有他们的智慧、辛勤和合作,本书就不可能高质量和迅速地与读者见面。
我们要特别感谢 “十一五”和“十二五”国家级教材规划、国家级精品课程、国家级双语教学示范课程、国家级教学团队、国家级精品视频公开课和国家级精品资源共享课等 “质量工程”的大力支持。
诚挚感谢国内外人工智能专著、教材和许多高水平论文报告的作者们。他们的作品及与他们的研讨为我们修订本书提供了丰富营养,使我们受益匪浅。我们在本书中引用了他们的部分材料,使本书能够取各家之长,较全面地反映人工智能各领域的最新进展。
希望本书新版能为广大师生奉献一部崭新的和适用的人工智能教科书,也为从事人工智能研究与开发的人员提供人工智能项目研究的实用参考书。
本课程的网址: 国家级精品课程《人工智能》https://www.icourses.cn/sCourse/course_6696.html和国家级视频公开课《人工智能PK人类智能》https://www.icourses.cn/web/sword/portal/videoDetail?courseId=9feeeee31327100091e34876d02411f6#/?resId=d119afd81334100090421d109e90c3cf等相关视频资源均已上网服务,可与本书配套参考使用。
蔡自兴
2023年10月17日
于长沙德怡园
|
|