新書推薦:
《
寻路:走向西南联大(西南联大文库)
》
售價:NT$
302.0
《
短视频Vlog全流程:镜头脚本+运镜技巧+场景主题+后期剪辑
》
售價:NT$
406.0
《
英国小史
》
售價:NT$
426.0
《
影响力原则
》
售價:NT$
354.0
《
德川家康(全十三册)(他用30年活了下来,建立起300年基业)
》
售價:NT$
4155.0
《
新知文库·动人的北平
》
售價:NT$
155.0
《
银色瀑布:美国兵工厂与中途岛海战
》
售價:NT$
359.0
《
乔丹法则
》
售價:NT$
363.0
|
編輯推薦: |
1.量化交易新模式:让量化交易更高效、更快捷、更完美。
2.全流程解析:涵盖量化交易的不同应用场景,介绍从发量化交易Python语言基础、工具库、可视化库、数据采集与分析,再到量化交易、套利策略等关键环节。
3.实战检验:ChatGPT结合多种量化交易工具及案例实操讲解,理解更加透彻。
4.100%提高量化交易效率:揭秘ChatGPT与量化交易高效融合的核心方法论和实践经验。
5.赠送资源:赠送教学视频及配套工具,供读者下载学习。
|
內容簡介: |
《AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀》是一本旨在帮助架构师在人工智能时代展翅高飞的实用指南。全书以ChatGPT为核心工具,揭示了人工智能技术对架构师的角色和职责进行颠覆和重塑的关键点。《AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀》通过共计 13 章的系统内容,深入探讨AI技术在架构
设计中的应用,以及AI对传统架构师工作方式的影响。通过学习,读者将了解如何利用ChatGPT这一强大的智能辅助工具,提升架构师的工作效率和创造力。
《AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀》的读者主要是架构师及相关从业人员。无论你是初入职场的新手架构师还是经验丰富的专业人士,《AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀》都将成为你的指南,帮助你在人工智能时代展现卓越的架构设计能力。通过《AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀》的指导,你将学习如何运用ChatGPT等工具和技术,以创新的方式构建高效、可靠、可扩展的软件架构。
同时,《AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀》也适用于对架构设计感兴趣的其他技术类从业人员,如软件工程师、系统分析师、技术顾问等。通过学习《AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀》的内容,你可以深入了解人工智能对架构设计的影响和带来的挑战,拓展自己的技术视野,提升对软件系统整体架构的理解和把握能力。
|
關於作者: |
关东升
————————————————————
关东升,在IT领域有20多年的开发经验,软件架构师、高级培训讲师、IT作家。熟悉Java、Kotlin、 Python、iOS、Android、 游戏开发、数据库开发与设计、软件架构设计等多种IT技术。参与设计和开发北京市公交一卡通百亿级大型项目,开发国家农产品追溯系统、金融系统微博等移动客户端项目。近期为中国移动、中国联通、南方航空、中石油、工商银行、平安银行和天津港务局等企事业单位授课。著有《看漫画学Python:有趣、有料、好玩、好用(全彩版)》《漫画Java》《Java 从小白到大牛》《Python 从小白到大牛》《iOS 开发指南》等50多部计算机书籍。
韩文锋
————————————————————
韩文锋, 黑龙江省农机推广专家库成员,作为专家库成员,为黑龙江省农机推广工作提供专业指导和支持。齐齐哈尔市大豆生产专家指导组专家,担任专家组成员,对齐齐哈尔市大豆生产进行指导,提高产量和质量。
|
目錄:
|
第1章ChatGPT、Python和量化交易概述
1.1 ChatGPT的应用领域2
1.2 Python编程在量化交易中的重要性和优势2
1.3 ChatGPT、Python和量化交易的结合价值和应用前景3
1.4 本章总结4
第2章 量化交易Python语言基础
2.1 Python解释器6
2.2 IDE工具7
2.2.1 安装Jupyter Notebook8
2.2.2 启动Jupyter Notebook9
2.3 第一个Python程序10
2.3.1 编写脚本文件运行第一个Python程序10
2.3.2 使用Jupyter Notebook编写和运行第一个Python程序11
2.4 Python语法基础12
2.4.1 标识符12
2.4.2 关键字12
2.4.3 变量声明13
2.4.4 语句13
2.4.5 Python代码块13
2.4.6 模块14
2.5 数据类型与运算符15
2.5.1 数据类型15
2.5.2 运算符18
2.6 控制语句21
2.6.1 分支语句22
2.6.2 循环语句24
2.6.3 跳转语句26
2.7 序列27
2.7.1 索引操作 27
2.7.2 序列切片28
2.7.3 可变序列——列表30
2.7.4 不可变序列——元组31
2.7.5 列表推导式32
2.8 集合33
2.8.1 创建集合33
2.8.2 集合推导式34
2.9 字典34
2.9.1 创建字典35
2.9.2 字典推导式35
2.10 字符串类型36
2.10.1 字符串表示方式36
2.10.2 字符串格式化38
2.11 函数38
2.11.1 匿名函数与lambda表达式39
2.11.2 数据处理中的两个常用函数41
2.12 文件操作42
文件操作43
2.13 异常处理46
2.13.1 捕获异常46
2.13.2 释放资源48
2.14 多线程50
创建线程50
2.15 本章总结53
第3章 Python量化基础工具库
3.1 NumPy库55
3.1.1 为什么选择NumPy55
3.1.2 安装NumPy库56
3.2 创建数组56
3.2.1 创建一维数组56
3.2.2 指定数组数据类型57
3.2.3 创建一维数组更多方式57
3.2.4 使用arange函数58
3.2.5 等差数列与linspace函数59
3.2.6 等比数列与logspace函数61
3.3 二维数组62
创建二维数组62
3.4 创建二维数组更多方式63
3.4.1 使用ones函数63
3.4.2 使用zeros函数64
3.4.3 使用empty函数64
3.4.4 使用full函数65
3.4.5 使用identity函数66
3.4.6 使用eye函数67
3.5 数组的属性68
3.6 数组的轴68
3.7 三维数组69
3.8 访问数组69
3.8.1 索引访问69
3.8.2 切片访问71
3.8.3 花式索引73
3.9 Pandas库74
3.9.1 为什么选择Pandas74
3.9.2 安装Pandas库74
3.10 Series数据结构75
3.10.1 理解Series数据结构75
3.10.2 创建Series对象75
3.10.3 访问Series数据78
3.10.4 通过下标访问Series数据78
3.10.5 通过切片访问Series数据79
3.11 DataFrame数据结构81
创建DataFrame对象81
3.12 访问DataFrame数据84
3.12.1 访问DataFrame列85
3.12.2 访问DataFrame行85
3.12.3 切片访问86
3.13 读写数据87
3.13.1 读取CSV文件数据88
3.13.2 案例1:从CSV文件读取货币供应量数据89
3.13.3 写入数据到CSV文件91
3.13.4 案例2:写入水果数据到CSV文件91
3.13.5 读取Excel文件数据92
3.13.6 案例3:从Excel文件读取货币供应量数据93
3.13.7 读取SQL数据库94
3.13.8 案例4:从数据库读取苹果股票数据94
3.14 本章总结96
第4章 量化交易可视化库
4.1 量化交易可视化库98
4.2 使用Matplotlib绘制图表99
4.2.1 安装Matplotlib99
4.2.2 图表基本构成要素99
4.2.3 绘制折线图100
4.2.4 绘制柱状图101
4.2.5 绘制饼状图102
4.2.6 绘制散点图104
4.2.7 案例1:贵州茅台股票历史成交量折线图105
4.2.8 案例2:绘制贵州茅台股票OHLC折线图106
4.3 K线图108
4.3.1 绘制K线图108
4.3.2 案例3:绘制贵州茅台股票K线图109
4.4 使用Seaborn绘制图表110
4.4.1 箱线图111
4.4.2 小提琴图113
4.4.3 关联线图114
4.4.4 Dist图115
4.4.5 线性回归图116
4.4.6 热力图117
4.5 本章总结119
第5章 数据采集与分析
5.1 数据采集概述121
5.1.1 数据采集的重要性和面临的挑战121
5.1.2 数据采集的基本步骤121
5.1.3 数据采集技术和工具122
5.2 网页数据采集122
5.2.1 使用urllib爬取静态网页数据123
5.2.2 案例1:爬取纳斯达克股票数据124
5.3 解析数据126
5.3.1 使用BeautifulSoup库126
5.3.2 案例2:解析纳斯达克股票数据127
5.3.3 使用Selenium爬取动态网页数据131
5.3.4 案例3:爬取搜狐证券贵州茅台股票数据133
5.3.5 案例4:使用Selenium解析HTML数据134
5.4 使用API调用采集数据136
5.4.1 常见的金融数据API136
5.4.2 使用TushareAPI采集数据137
5.4.3 案例5:使用Tushare API获取贵州茅台股票数据138
5.5 数据清洗和预处理140
5.5.1 使用ChatGPT辅助数据清洗140
5.5.2 案例6:使用ChatGPT辅助分析股票数据141
5.5.3 案例7:处理股票数据缺失值问题142
5.5.4 案例8:处理股票数据类型不一致问题145
5.5.5 案例9:处理股票数据异常值问题146
5.6 统计分析147
5.6.1 使用ChatGPT辅助统计分析148
5.6.2 相关性分析148
5.6.3 案例10:股票行业相关性分析149
5.6.4 统计描述和摘要151
5.6.5 案例11:苹果股票数据统计描述和摘要分析151
5.7 本章总结155
第6章 量化交易基础
6.1 量化交易概述157
6.2 金融市场和交易品种概述157
6.3 技术分析和基本面分析基础158
6.3.1 技术分析158
6.3.2 基本面分析159
6.3.3 利用ChatGPT辅助技术分析159
6.3.4 案例1:利用ChatGPT对000001.SZ股票
进行技术分析160
6.3.5 利用ChatGPT辅助基本面分析162
6.3.6 案例2:利用ChatGPT对某上市公司股票公告进行解析162
6.4 量化交易策略概述163
6.4.1 量化交易策略分类164
6.4.2 ChatGPT与量化交易策略164
6.5 本章总结165
第7章 ChatGPT与量化交易结合
7.1 ChatGPT在市场情报分析中的应用167
7.1.1 案例1:利用ChatGPT对“央行发布降息
25个基点”消息进行分析167
7.1.2 案例2:利用ChatGPT对“重磅项目获得批复,股价大涨20%”消息进行分析168
7.2 使用ChatGPT进行市场预测和趋势识别169
7.2.1 案例3:使用ChatGPT预测某城市商业地产市场走势169
7.2.2 案例4:使用ChatGPT预测“新能源汽车补贴退坡”的影响170
7.3 ChatGPT在交易决策支持中的应用171
7.3.1 案例5:猛龙科技获大单,ChatGPT提出交易决策建议 171
7.3.2 案例6:某新能源概念股获多项利好,ChatGPT提出交易建议172
7.4 本章总结173
第8章 趋势跟踪策略
8.1 趋势跟踪策略概述176
8.1.1 趋势跟踪和交易决策中的主要概念176
8.1.2 使用移动平均线进行分析177
8.2 使用ChatGPT辅助趋势跟踪策略决策过程178
8.3 案例:使用ChatGPT辅助股票移动平均线策略分析179
8.3.1 计算移动平均线179
8.3.2 K线图184
8.3.3 合并K线图和移动平均线图186
8.3.4 初始策略规则187
8.3.5 绘制价格和信号图表189
8.3.6 使用ChatGPT辅助回测190
8.3.7 优化策略191
8.4 本章总结192
第9章 动量策略
9.1 动量策略概述194
9.1.1 动量策略中的主要概念194
9.1.2 动量策略的优点和限制195
9.2 相对强弱指标195
9.3 使用ChatGPT辅助动量策略决策过程196
9.4 案例:使用ChatGPT辅助贵州茅台股票价格和RSI交易信号分析196
9.4.1 数据获取和准备数据197
9.4.2 RSI指标计算199
9.4.3 RSI指标曲线201
9.4.4 交易信号生成202
9.4.5 可视化分析203
9.5 本章总结205
第10章 海龟交易策略
10.1 海龟交易策略概述207
10.1.1 海龟交易策略中的主要概念207
10.1.2 实施海龟交易策略208
10.2 使用ChatGPT辅助实施海龟交易策略208
10.3 案例:使用ChatGPT辅助实施海龟交易策略(以中石油为例)209
10.3.1 数据获取和准备数据209
10.3.2 编写海龟交易策略程序214
10.3.3 可视化分析217
10.3.4 使用ChatGPT辅助结果化分析219
10.4 本章总结220
第11章 高频交易策略
11.1 高频交易策略概述222
11.2 高频交易策略中的主要概念222
11.2.1 实施高频交易策略223
11.2.2 高频交易策略中常见的算法策略223
11.2.3 高频交易策略技术、设施层面问题224
11.3 使用ChatGPT辅助实施高频交易策略过程224
案例1:使用ChatGPT辅助实施高频交易策略225
11.4 案例2:基于价差的高频交易策略实施过程228
11.5 案例3:打造自己的高频交易系统231
11.6 本章总结234
第12章 套利策略
12.1 套利策略中的主要概念236
实施套利策略237
12.2 使用ChatGPT辅助实施套利策略237
12.3 案例1:股票A和跨市场套利238
12.4 案例2:利用美元与欧元汇率差异来套利239
12.5 案例3:同行业相对值套利策略240
12.6 案例4:中国石油和中国石化配对交易套利过程241
12.6.1 清洗数据241
12.6.2 读取股票数据242
12.6.3 两只股票相关性分析243
12.6.4 使用ChatGPT对相关性进行分析244
12.6.5 回测股票历史数据245
12.6.6 使用ChatGPT对回测结果进行分析247
12.7 本章总结248
第13章 机器学习策略
13.1 机器学习策略中的主要概念250
13.2 机器学习策略分类250
13.3 分类策略251
13.3.1 Python机器学习库251
13.3.2 机器学习策略实施过程252
13.3.3 案例1:使用分类策略预测苹果股票走势253
13.3.4 案例2:使用回归策略预测苹果股票走势259
13.4 本章总结266
|
內容試閱:
|
踏上量化交易的智慧之旅
当我们回顾过去,深情地凝视这个充满机遇与挑战的时代,我们不难发现,自人工智能横空出世以来,世界发生了翻天覆地的变化。AI的飞速发展不仅深刻影响科技、医疗、教育等领域,更将金融市场带入一个前所未有的新时代。在这个充满机遇与变革的时刻,量化交易,作为人工智能与金融交汇的结晶,正崭露头角,具有不可估量的潜力。
恰逢Python作为一门简洁、灵活且强大的编程语言,傲然登上量化交易的舞台,其开源特性和丰富的工具生态系统,让成为投资者和交易员的不二之选。与此同时,ChatGPT作为一种前沿的自然语言处理技术,更是将量化交易推向全新的高度。它不仅可以处理大规模的金融数据,还能进行情感分析和市场预测,为决策者提供前所未有的智能支持。
正是在这样的背景下,我萌生了撰写《AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀》这本书的念头。本书旨在为您打开探索量化交易新世界的大门,让您掌握Python编程的精髓,理解量化交易的核心理念,深入探索ChatGPT的奥秘,并通过实战案例和策略分析,助您在量化交易的征程上翱翔飞跃。
本书的内容分为多个章节,每一章节都贯穿着对知识的深入剖析和实际应用的指导。从ChatGPT、Python编程基础,到量化交易工具库和数据可视化,再到量化交易策略的构建与应用,本书将为您呈现全方位、多角度的学习路径,帮助您从零基础逐步成长为量化交易的高手。
无论您是金融从业者,投资者,还是对量化交易和人工智能感兴趣的一般读者,本书都将为您提供丰富而实用的知识。本书将以通俗易懂的语言,生动活泼的案例,以及充满启发性的思考,带您走进这个精彩而神秘的领域。
在这个充满机遇的时代,量化交易正在引领金融市场的未来。让我们一起携手,让ChatGPT的智慧之翼插上量化交易的翅膀,共同追逐成功的投资策略和创造财富的机会。
预祝您阅读愉快,取得丰硕的学习成果!
本书附赠全书案例源代码及相关教学视频等资源,读者可扫描下方左侧二维码关注“博雅读书社”微信公众号,输入本书77页的资源下载码,即可获得本书的下载学习资源。
本书提供答疑服务,可扫描维下方右侧二维码留言“AI程序员”,即可进入学习交流群。
|
|