新書推薦:
《
冯友兰和青年谈心系列:看似平淡的坚持
》
售價:NT$
254.0
《
汉字理论与汉字阐释概要 《说解汉字一百五十讲》作者李守奎新作
》
售價:NT$
347.0
《
汗青堂丛书144·决战地中海
》
售價:NT$
765.0
《
逝去的武林(十周年纪念版 武学宗师 口述亲历 李仲轩亲历一九三零年代武人言行录)
》
售價:NT$
250.0
《
唐代冠服图志(百余幅手绘插画 图解唐代各类冠服 涵盖帝后 群臣 女官 士庶 军卫等 展现唐代社会风貌)
》
售價:NT$
398.0
《
知宋·宋代之科举
》
售價:NT$
454.0
《
那本书是(吉竹伸介与又吉直树 天才联动!)
》
售價:NT$
454.0
《
传播的跃迁:人工智能如何革新人类的交流
》
售價:NT$
505.0
|
內容簡介: |
微积分是理工科高等学校非数学类专业最基础、重要的一门核心课程。许多后继数学课程及物理和各种工程学课程都是在微积分课程的基础上展开的,因此学好这门课程对每一位理工科学生来说都非常重要。本套教材在传授微积分知识的同时,注重培养学生的数学思维、语言逻辑和创新能力,弘扬数学文化,培养科学精神。本套教材分上、下两册。上册内容包括实数集与初等函数、数列极限、函数极限与连续、导数与微分、微分学基本定理及应用、不定积分、定积分、广义积分和常微分方程。下册内容包括多元函数的极限与连续、多元函数微分学及其应用、重积分、曲线积分、曲面积分、数项级数、函数项级数、傅里叶级数和含参积分。
|
關於作者: |
崔建莲,清华大学数学系副教授。2002年7月获得中科院数学研究所博士学位,2004年4月北京大学博士后出站,香港大学访问学者,韩国首尔大学访问学者,美国威廉玛丽学院访问学者。2004年4月入职清华大学数学系,现为数学系副教授,主要研究方向为算子代数、算子理论及在量子信息中的应用。发表学术论文60多篇,SCI收录50多篇。
|
目錄:
|
目录第10 章 多元函数的极限与连续··········110.1 n ? 中的点集拓扑和点列··········.110.1.1 n ? 中的点集拓扑···················110.1.2 n ? 中的点列·························610.1.3 n ? 的完备性·························7*10.1.4 n ? 中的等价范数···················8习题10.1 ··································.1010.2 多元函数与多元向量值函数····.1110.2.1 多元函数的概念··················.1110.2.2 二元函数的图像··················.1210.2.3 多元向量值函数··················.16习题10.2 ··································.1710.3 多元函数的极限···················.1810.3.1 多元函数的重极限···············.1810.3.2 多元函数的累次极限············.1910.3.3 向量值函数的极限···············.21习题10.3 ··································.2310.4 多元函数和向量值函数的连续性·······························.2410.4.1 多元函数连续的概念············.2410.4.2 多元函数对各个变量的分别连续·······························.2610.4.3 多元连续函数的性质············.27习题10.4 ··································.28第11 章 多元函数微分学················.3011.1 多元函数的偏导数与全微分····.3011.1.1 多元函数的偏导数···············.3011.1.2 多元函数的全微分···············.3211.1.3 函数可微的条件··················.3411.1.4 全微分在函数近似计算中的应用······························.37习题11.1 ··································.3811.2 高阶偏导数与复合函数的微分··································.3911.2.1 高阶偏导数·······················.3911.2.2 复合函数的微分··················.4111.2.3 一阶全微分的形式不变性·······.43习题11.2 ··································.4411.3 方向导数与梯度···················.4611.3.1 方向导数·························.4611.3.2 梯度······························.48习题11.3 ··································.5011.4 向量值函数的微分················.5111.4.1 向量值函数的微分···············.5111.4.2 复合映射的微分··················.54习题11.4 ··································.5511.5 隐函数微分法与逆映射微分法··.5611.5.1 隐函数的微分····················.5611.5.2 逆映射的微分····················.64习题11.5 ··································.64第12 章 多元函数微分学应用··········.6712.1 多元函数微分学的几何应用····.6712.1.1 空间曲线·························.6712.1.2 空间曲面的切平面与法线·······.6912.1.3 空间曲线的切线与法平面·······.72习题12.1 ··································.7612.2 高阶全微分与泰勒公式··········.7712.2.1 高阶全微分·······················.7712.2.2 泰勒公式·························.79习题12.2 ··································.8212.3 多元函数的极值···················.8212.3.1 无条件极值·······················.8312.3.2 条件极值·························.87习题12.3 ··································.95第13 章 重积分····························.9813.1 二重积分的概念及性质··········.9813.1.1 二重积分的概念··················.9813.1.2 可积的条件·······················10013.1.3 二重积分的性质··················101习题13.1 ··································10313.2 二重积分的计算···················10413.2.1 直角坐标系·······················10413.2.2 二重积分的坐标变换············108习题13.2 ·································.11413.3 三重积分···························.11613.3.1 直角坐标系······················.11713.3.2 一般坐标变换···················.11913.3.3 柱坐标变换·······················12013.3.4 球坐标变换·······················122习题13.3 ··································12413.4 重积分在几何和物理中的应用··································12513.4.1 空间曲面的面积··················12613.4.2 重积分在物理中的应用··········128习题13.4 ··································131*13.5 n 重积分····························13213.5.1 若当测度的定义··················13213.5.2 若当可测的等价条件············13413.5.3 若当测度的运算性质············13513.5.4 n 重积分··························13813.5.5 n 维球坐标变换··················139第14 章 曲线积分·························14314.1 第一型曲线积分——关于弧长的曲线积分·························14314.1.1 第一型曲线积分的概念··········14314.1.2 第一型曲线积分的性质·········.14514.1.3 第一型曲线积分的计算·········.14614.1.4 柱面侧面积的计算··············.148习题14.1 ·································.14914.2 第二型曲线积分——关于坐标的曲线积分························.15014.2.1 第二型曲线积分的概念·········.15014.2.2 两类曲线积分之间的关系······.15114.2.3 第二型曲线积分的计算·········.151习题14.2 ·································.15514.3 格林公式···························.15714.3.1 格林公式························.15714.3.2 曲线积分与积分路径无关的条件·····························.16014.3.3 求微分式的原函数··············.16114.3.4 全微分方程······················.164习题14.3 ·································.166第15 章 曲面积分························.17015.1 第一型曲面积分——关于面积的曲面积分························.17015.1.1 第一型曲面积分的概念·········.17015.1.2 第一型曲面积分的计算·········.171习题15.1 ·································.17415.2 第二型曲面积分——关于坐标的曲面积分························.17515.2.1 第二型曲面积分的概念·········.17515.2.2 第二型曲面积分的计算·········.178习题15.2 ·································
|
|