登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』有趣的让人睡不着的思维游戏+会速算的人人生都不会太差(套装2册)

書城自編碼: 3915478
分類: 簡體書→大陸圖書→科普讀物科學世界
作者: 李异鸣 [美]托马斯·奥康纳·斯隆
國際書號(ISBN): 9787558086519
出版社: 江苏凤凰美术出版社
出版日期: 2021-05-01

頁數/字數: /

售價:NT$ 457

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
索恩丛书·北宋政治与保守主义:司马光的从政与思想(1019~1086)
《 索恩丛书·北宋政治与保守主义:司马光的从政与思想(1019~1086) 》

售價:NT$ 345.0
掌故家的心事
《 掌故家的心事 》

售價:NT$ 390.0
农为邦本——农业历史与传统中国
《 农为邦本——农业历史与传统中国 》

售價:NT$ 340.0
小麦文明:“黄金石油”争夺战
《 小麦文明:“黄金石油”争夺战 》

售價:NT$ 445.0
悬壶杂记全集:老中医多年临证经验总结(套装3册) 中医医案诊疗思路和处方药应用
《 悬壶杂记全集:老中医多年临证经验总结(套装3册) 中医医案诊疗思路和处方药应用 》

售價:NT$ 614.0
无法忍受谎言的人:一个调查记者的三十年
《 无法忍受谎言的人:一个调查记者的三十年 》

售價:NT$ 290.0
战争社会学专论
《 战争社会学专论 》

售價:NT$ 540.0
剑桥意大利戏剧史(剑桥世界戏剧史译丛)
《 剑桥意大利戏剧史(剑桥世界戏剧史译丛) 》

售價:NT$ 740.0

建議一齊購買:

+

NT$ 163
《 数学漫谈 许莼舫数学科普经典 》
+

NT$ 184
《 古算趣味 许莼舫数学科普经典 》
+

NT$ 163
《 中国算术故事 许莼舫数学科普经典 》
+

NT$ 163
《 中国几何故事 许莼舫数学科普经典 》
編輯推薦:
《有趣得让人睡不着的思维游戏》不仅可以让孩子们获得很多趣味知识,更重要的是它会在无形中激发孩子的思维潜能,促进孩子大脑发育,还可以增强孩子开发创新的能力。爱因斯坦说过,想象力比知识更重要,是知识进化的源泉。爱因斯坦所说的想象力,即人的思维能力。而在思维游戏中锻炼自己的想象力与智力,无疑是非常好的一种方式。本书精心搜集了数百则有趣又好玩的思维游戏 孩子们可以通过操作这些游戏,解答其中原理,在享受乐趣的同时,全面提升发散思维能力、逻辑思维能力和数学思维能力,充分挖掘左右大脑的潜能,使孩子在做游戏的过程中,不知不觉抵达智慧的殿堂。浅显易懂的文字说明、生动有趣的插图、缜密有趣的游戏,好玩、有趣、刺激,这里就是你头脑思维的训练场。
《会速算的人,人生都不会太差》用新奇、有趣、实用的方式教会我们怎样快速准确地进行加减乘除,让数学运算变得简单、快捷、高效。全书读来,毫无晦涩之感,反而让人有欲罢不能之感,极欲一下子读罢全书,掌握所有的有效、富有技巧性的计算方法。本书极具实用性、趣味性、可操作性,值得大家一读。
內容簡介:
《有趣得让人睡不着的思维游戏》共收集了 400 多个思维小游戏,其中包括了培养发散思维、逻辑思维和数学思维的游戏谜题,孩子们可以运用算术技巧和常识来解决看似不可能的问题。这些脑筋急转弯似的有趣的、充满创意思维的游戏谜题能够让孩子头脑的七种能力得到全面提升!浅显易懂的文字说明、生动的插图,多角度调动孩子们的注意力,好玩、有趣、刺激,本书就是孩子头脑思维的训练场。
《会速算的人,人生都不会太差》以新奇和消遣的方式,介绍了速算法在数学领域内的运用,通过建立数与数之间的特殊关系,来进行较快的加减乘除运算。
《会速算的人,人生都不会太差》所介绍的计算方法,既可以应用于实际工作,提高运算速度和准确率,也可以让读者领会到精彩的算术运算,锻炼逻辑思维能力。
快翻开本书,提高你的运算和思维能力吧!
關於作者:
李异鸣,知名作家,图书策划人,成功策划百余部青少年读物,深受读者欢迎。
托马斯·奥康纳·斯隆(Thomas OConor Sloane,1851年11月21日—1940年8月7日),毕业于哥伦比亚大学,于1876年在该校获得博士学位,之后又获得电气工程和法学博士。在1929年到1938年担任《惊异传奇》的编辑,是《科学与发明》的副主编。其作品有《标准电子词典》《如何成为一名成功的电工》《电气算法》《电气简化》《电动玩具制作》、《速度和数字的乐趣》《电影放映》《液态空气和气体液化》等。他还是传记《阿西尼的圣·弗朗西斯》的英译者,对大英百科全书、奥尔登百科全书和天主教百科全书有巨大的贡献。
目錄
有趣得让人睡不着的思维游戏
部分 发散思维谜题
风吹蜡烛 /2过桥洞 /2山涧 /2找错误 /2两个乒乓球 /3今天星期几 /3鸡蛋不破 /3称重 /3称糖 /3移数字 /4一封军事情报 /4马圈趣题 /4消失的钱 /4取出药片 /5礼服和围巾的问题 /5移动杯子 /5药丸的问题 /5机票的问题 /6有趣的类比 /63 只桶的交易 /6男同事和女同事 /6羊吃草 /7怎样卖电器 /7井底之蛙 /7蟑螂的启示 /7
会速算的人,人生都不会太差
序言
*章 符号和记号入门
阿拉伯符号
小数点
数字 1
算术运算符号
小数
算术补数
数字和记号组合
第二章 加法
加法及其理论的说明
加法表
进位 1
怎样加
各种加的方法
会计的加法
一组数字的加法
指数式相加
阶段式相加
组合式相加
平均值相乘的加法
乘法式相加
十进制加法
两列及三列数相加
左手加法
列与列间无进位加法
凑整相加
一看便知得数
反向或左手加法
补数加法
第三章 减法
减法的原理
简化减法
凑整相减
成对相减
用目测作减法
以加法作减法
反向或左手减法
补数减法
和相减
和相减的补充内容
减法的性质
第四章 乘法
乘法是加法的捷径
乘法表
扩展乘法表
与双数或两位数相乘
两位数的乘法
增量乘法
另一种增量乘法
三位数相乘的特殊方法
多项式乘法特例
反向或左手乘法
因式相乘或比例相乘
可整除项乘法
可整除项乘法实际应用
因子相乘
9 的乘法
11 的乘法
111 的乘法
补数乘法
得数末尾为 5 的乘法
两个数同时相乘
12 - 20 之间的数的乘法
与“青春数”相乘
十字相乘法
滑动乘法
舍九相乘
乘法的奇怪之处
奇妙的乘法
乘法中的奇数
手指乘法
第五章 除法
除法因子
缩减长除法
长除法的意大利式方法
舍九相除
有关除法的提醒
数的可除性
除法特例
除以 99
在除法中数字 3 的特性
路易斯·卡罗尔的捷径
第六章 分数
普通分数
分号的意义
改变分数的值
化减至公分母或同类分数
分数的加法和减法
分数的乘法和除法
普通分数转换至小数
第七章 小数
小数点的位置引起的差错
小数的加法
小数的减法
小数的乘法
小数点的放置
小数的除法
第八章 利息和抵消以及
百分数的计算
利率的表达式
利息期简化
一日利息
利率因子
利息抵消计算
百分数计算
百分数的近似计算
第九章 数的乘方
乘方和根
十进制和混合数字的乘方
和根
数字及平方根之间的
关系
数和平方的尾数
一个奇怪的分数
循环数
平方的性质
2 的平方的性质
费马大定理
立方的性质
不同乘方的排序
乘方的展开
两数平方的关系
立方级数
两个平方的奇妙性质
两个平方和
斜边的平方
等腰直角三角形的值
高次乘方的捷径
高次乘方的开方
平方的计算捷径
大数平方的计算捷径
数字平方的各种方法
求平方数的麦吉弗特方法
求高次方根的尼克森方法
第十章 指数
指数乘方
分数指数
指数 0
素指数
负指数
10 的乘方
第十一章 等分圆
等分圆
古人的近似值
梅提斯的 π 值
肖的值
几何近似值
π 值的辅助记忆法
奇妙的 π 值测定
等分圆
第十二章 多样化
素数
素数的性质
怎样找到素数
完全数
相亲数
平方和立方法则
4 点的符号
太阳和月亮系统中的
数字 108
汽车轮胎
两个职员
酒和水的矛盾之处
数的平方的矛盾之处
想象数字
时间卡的矛盾之处
记住电话号码
神奇的乘法
一个特别数
奇妙的乘法和加法
数字 9 的乘法
数字的性质
9 的性质
会计的错误
神奇的货币
推测数字之和
其他神奇之处
內容試閱
序言

算术包含很多内容,但是在教科书中,很少涉及快速运算。如果能给出一种速算的方法就好了。出于某种原因,乘法表仅限于 9×9 以内,而将之继续拓展下去并不困难。另外一个有意思的现象是,许多大学生并不理解分式指数的含义,这样说并不过分,因为很少有人能说清为什么数
字不论大或小,其 0 次幂都等于 1,而看起来它应该等于 0。
本书到了读者手中,可以变成一项有趣的工作。这里有大量的信息资源和权威的观点,一些例子很少有人知道。出现在这里的问题,是对他人遗留问题的一种搜集和拾取。
我们可以从目录上看到,序言所述仅仅是本书探寻内容的一小部分。从某种意义上说,本书可以作为普通算术教科书的补充,但又不止于此,字里行间所提到的计算方法,可以应用于实际
工作,还可以在快速得出计算结果的同时,领会到精彩的运算方法。
在本书中,以轻松和消遣的方式来探究数字科学,是一件很有意思的事情。
编者希望将有用的知识以轻松的语言呈现出来,以使读者受益。

爱因斯坦的谜题
这是爱因斯坦在 20 世纪初出的谜题,据说当时世界上有 98% 的人答不出来。
(1)在一条街上,有 5 座房子,喷了 5
种颜色。
(2)每座房子里住着不同国籍的人。
(3)每个人喝不同的饮料,抽不同品
牌的香烟,养不同的宠物。
提示:
(1)英国人住红色房子。
(2)瑞典人养狗。
(3)丹麦人喝茶。
(4)绿色房子在白色房子左面隔壁。
(5)绿色房子主人喝咖啡。
(6)抽 Pall Mall 香烟的人养鸟。
(7)黄色房子主人抽 Dunhill 香烟。
(8)住在中间房子的人喝牛奶。
(9)挪威人住间房。
(10)抽 Blends 香烟的人住在养猫的人
隔壁。
(11)养马的人住在抽 Dunhill 香烟的
人隔壁。
(12)抽 Blue Master 的人喝啤酒。
(13)德国人抽 Prince 香烟。
(14)挪威人住在蓝色房子隔壁。
(15)抽 Blends 香烟的人有一个喝水的
邻居。
问题是:谁养鱼?
加法表

在乘法表中,共有 144 个乘式需要记住,相应地,加法表里只有 45 个式子要记住。老实说,加法表不如乘法表那样为人熟知。
9 个数字的相互运算要强调一下,在这里是一个数字同 9 个数字中的某一个相加。

数字 1 到 9 相加等于 45。
在这些两个数的加法中:
得数是 1 位数的加式有 20 个,比如:2 + 4 = 6,3+ 5 = 8。
得数是 2 位数的加式有 25 个,比如:5 + 6 = 11,7+ 9 = 16。
两个数相加,*的得数是 18,即 9 + 9 = 18;得数中左边的 1 是加法中的进位。因此,1 到 9 中的一个数
同另一个数相加,如果有进位,那只能是 1。
下 面 予 以 解 释, 假 设 6,7,8,9 相 加,6 + 7 =13,进位是 1。然后是 3 + 8,这样有了两个进位 1,得数是 21,可进位 2。1 再与 9 相加,加上先前的 2 个进位,可以得出 4 个数的和是 30。
上例中的*次进位,只能是 1,再次进位时,是 3个数相加,进位总共是 2,*次进位后,第二进位仍然是 1。当加上第 4 个数时,再次进位 1,*后,得数的十位是 3。
由此得出结论:当一列 1 位数相加时,如有进位,单次进位只能是 1,后续相加产生的进位也是这样。
下面是几列不同的加法运算,每列数的右边部分是运算得数:
 a b c d
 9 50 1 22 9 32 9 40
 8 41 2 21 8 23 8 31
 9 33 2 19 7 15 7 23
 7 24 8 17 8 8 16
 8 17 9 8
 9
 — — — —
 50 22 32 40
列 a 的数字相加有如下特点,即每次相加总有单次进位 1,这一列进位*多,我们可以看到,每次进位只能是1,所以得数的十位部分依次变为 1,2,3,4,5。
进位 1现在说说有哪些没有给出的条件和在什么地方“进位1”,两种方法已在下式给出:
11111111  222222  3333  44
12345678  234567  3456  45
————  ———  ——  —
23456789  456789  6789  89
有 20 种情况下没有“进位 1”,接下来是 25 种情况都有“进位 1”。
 1 2 2 3 3 3 4 4 4 4
 9 8 9 7 8 9 6 7 8 9
 — — — — — — — — — —
 10 10 11 10 11 12 10 11 12 13
5 5 5 5 5 6 6 6 6 7 7 7 8 8 9
5 6 7 8 9 6 7 8 9 7 8 9 8 9 9
— — — — — — — — — — — — — — —
10 11 12 13 14 12 13 14 15 14 15 16 16 17 18

怎样加

在当今的阅读教学中,先教孩子们认单词,而不去管怎样拼读。加法运算也是这样,不用去管它如何命名;在做前面 a 列数字加法时,你应该对自己说必须快速连续地把 9,17,24,33,41 相加,而不要对自己说 9 和 8 相加等于 17,再和 7 相加得到 24 等等。
测验快速相加的表用起来很有意思,如果不能毫不犹豫地做加法,那么快速相加以及更精确相加就有点难了。

各种加的方法

列与列间,每次有一个数相加,这可能是*常用的方法了;这也是*明白、*简单,或许也是*慢的方法。有两种方式,从上向下加或从下往上加。为了验证运算是否准确,最好的办法是两种方式各做一次。

会计的加法

分别写出每列数字之和,一个和在另一个和之下,每个“后继”之和各向左空出一位数字来;接下来*后附带的和就会给出总和。如下式所列:
9938   *列数字之和   30
7827   第二列数字之和   8
4119   第三列数字之和   26
6826   第四列数字之和   26
———             ———
28710      共      28710
左边的和是用常规方法得出的,右边的和是用刚才描述的方法得出的。
一组数字的加法两位数相加,只有 17 个不同的结果,这容易知道。它们的相加还有另一种方式,接下来就是一组数字相加的*步。
这种方法由两个或多个数相加构成,并且是竖列中的两个或多个数一次完成相加。
3
9  12
7
8  15
—  —
   27
在上式中,8 与 7 的和 15,在 9 与 3 的和 12 之下;12 和 15 相加得到 27。这样可以或不涉及彼此双数相加,因为两个相加之和的十位数不可能大于 1,所以即使运算过半,仍然如此,所以这种加法很简单。
当几列数成组相加时,一般有一个数要进位,这也许会被加到*组的下一列,在后面的文章中会讲到。
下面是速算法:在*后的例子中,15 加上 10 得出25;接着 25 加上被错过的数字 2(12 的 2),即等于 27。
这个系统使运算像普通加法那样简单。组加法的每一种方法同单直列加法相比更容易。

指数式相加

下面给出的两种类似的加法有几个值,看起来如此简单。一列数字的各种不同的加法,如果没有别的值,则用来检验运算是否精确。或像平时表述的那样,去“证明它”。

8  7
9
7  8
3
2
6
8 5
7
6  5
3
6
——
6 5
参考左手列,加的规律是从底部数字开始向上相加,直到接近 20,接下来上面的下一个数字的相加会给出 20或超过 20 的和。基于此,和的*后一位数字写在列边上。
另一个新的加法是,相加的两者之间没有参考。开始运算直至又一次接近 20;最终的数字写下来,一直重复,直至顶部。如果顶部加法在十位上没有数字,就把所有边上的数字相加;如果有顶部数字或上面的关键数字,这些就要加在一起。和之前要写下一个数字,即十位的位置等于刚才写在边上的关键数字,关键数字相加,进位也增加。
假设现在列顶部没有 8,在*后的关键数字之后 9 已经写在了左手边;接下来,只剩下关键数字 3,5,5 和 8,相加得 18。这样已经加上了剩下的数字 9,谁又会是顶部数字呢?这里给出 27;然后只有 2 可以运算,进入十位有关键数字 3;我们会得到总数 57,它是这列数的总和,没有顶部数字 8。

阶段式相加

下一种方法有些类似,这次从右下部向上连续相加,除了前例中接近 20 的点被放在了边上,忽略十位,加法继续。那么从下往上数第三个数我们加上点,再继续以 5 作起点。有 5 + 7,得数 12,下一个得数是 8,用点标记,接下来以 2 为起点与其上数 8、6、2 相加,总数是 18,用点标记;接着 8 与其上的 3 和 7 相加,*后一个数用点标记。我们得到 17,将 7 与顶部数字运算得到 7 + 8 = 15。
这是*后一个点,个位 5 被写下来。因为共有 6 个点,所以十位数是 6,*后的得数是 65。
如前所述,如果在*后相加中没有数超过10,这个数字只需简单加在个位就可以了。在前二例中,有1进位到顶部。
8 ●
9 ●
7 ●
3
2 ●
6
8
7 ●
6 ●
3
6
——
65

组合式相加

我们应该记住得数是 10 的数字的加法。比如 3,3,4;1,3,6;2,3,5 等。两个数字合并,假定人人尽知,任何人都可以写出不同的组合。推荐学习更多数的组合,如有 8 个 4 个数字的组合,得数是 20。有 9 个 4 个数字的组合,得数是 30。再高些的组合并不常用,涉及更多数字的组合很少见。2 到 3 个数字的组合*常用。
组合式相加不应该局限于两个数为一组。所有的方法都有助于组合式相加。熟练的人一定有自己的独特方法来应对成组相加。

平均值相乘的加法

取一些数的平均值,用它乘以这些数的数量就是这些数的和。假设 5,4,3 相加,4 是三个数的平均值,所以4×3 = 12,就可以得到数的和。


乘法式相加

以下是一列单位数相加的另一种方法。通过加上或减去一个数,化为相同的值,由一个简单乘法给出加法值,与我们或加或减后的值相同。举例如下:
9 - 1 = 8   9 - 2 = 7
9 - 1 = 8   6 + 1 = 7
8 = 8   3 + 4 = 7
7 + 1 = 8   4 + 3 = 7
7 + 1 = 8   8 - 1 = 7
— —  — — —
40 40  30 5 35
        5
       —
        30
这个方法是简单乘法用于加法的例子。在第二个例子中,8 被加,3 被减,净值是加后为 5,它被 35 减去后可得出答案。

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.