登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』深度学习从入门到精通

書城自編碼: 3907703
分類: 簡體書→大陸圖書→教材研究生/本科/专科教材
作者: 谢佳标
國際書號(ISBN): 9787115618290
出版社: 人民邮电出版社
出版日期: 2023-09-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:NT$ 254

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
大模型应用开发:RAG入门与实战
《 大模型应用开发:RAG入门与实战 》

售價:NT$ 407.0
不挨饿快速瘦的减脂餐
《 不挨饿快速瘦的减脂餐 》

售價:NT$ 305.0
形而上学与存在论之间:费希特知识学研究(守望者)(德国古典哲学研究译丛)
《 形而上学与存在论之间:费希特知识学研究(守望者)(德国古典哲学研究译丛) 》

售價:NT$ 504.0
卫宫家今天的饭9 附画集特装版(含漫画1本+画集1本+卫宫士郎购物清单2张+特制相卡1张)
《 卫宫家今天的饭9 附画集特装版(含漫画1本+画集1本+卫宫士郎购物清单2张+特制相卡1张) 》

售價:NT$ 602.0
化妆品学原理
《 化妆品学原理 》

售價:NT$ 254.0
万千教育学前·与幼儿一起解决问题:捕捉幼儿园一日生活中的教育契机
《 万千教育学前·与幼儿一起解决问题:捕捉幼儿园一日生活中的教育契机 》

售價:NT$ 214.0
爱你,是我做过最好的事
《 爱你,是我做过最好的事 》

售價:NT$ 254.0
史铁生:听风八百遍,才知是人间(2)
《 史铁生:听风八百遍,才知是人间(2) 》

售價:NT$ 254.0

建議一齊購買:

+

NT$ 301
《 智能制造技术与装备 》
+

NT$ 454
《 现代加工技术(第5版) 》
+

NT$ 469
《 基础护理学(第7版) 》
+

NT$ 248
《 习近平法治思想概论 》
+

NT$ 226
《 文学理论(第二版) 》
+

NT$ 428
《 艺术学概论(第5版) 》
編輯推薦:
1.基于当前最流行的深度学习框架之一——Keras,改善教材领域Keras框架知识匮乏的现状2.统计之都爆款畅销书专家倾力打造3.提供丰富的配套资源及衍生服务4.微课视频详细讲解重点难点5.理论联系实际,提供大量实践案例与应用
內容簡介:
本书基于当前流行的深度学习框架之一——Keras,从新手的角度出发,详细讲解Keras的原理,力求帮助读者实现Keras从入门到精通。全书共9章,主要内容包括初识深度学习、深度学习的数据预处理技术、使用Keras开发深度学习模型、卷积神经网络及图像分类、循环神经网络在文本序列中的应用、自编码器、生成式对抗网络、模型评估及模型优化,以及深度学习实验项目。本书内容由浅入深、语言通俗易懂,从基本原理到案例应用、从基础算法到对复杂模型的剖析,让读者在循序渐进的学习中理解Keras。本书可作为高等院校计算机、通信、大数据等专业相关课程的教材,也可作为人工智能、图像处理、计算机等方向的科研人员和深度学习技术爱好者的参考书。
關於作者:
谢佳标 曾就职于平安人寿担任资深数据挖掘专家,目前供职于世界百强企业,负责数据中台、数据化运营、金融科技、创新规划等项目及前沿研究。有13年的数据挖掘与分享相关工作的经验;曾经从事过电商、电购、电力、游戏、金融和物流等行业,熟悉不同行业的数据特点。R语言资深玩家,熟悉Python及深度学习Keras框架,有丰富的大数据挖掘和可视化实战经验。2017-2021年被评为微软数据科学和AI方向最具价值专家(微软MVP)。 书籍著作:《R语言与数据挖掘》、《数据实践之美:31位大数据专家的方法、技术与思想》《R语言游戏数据分析与挖掘》、《Keras深度学习:入门、实战与进阶》、《R语言数据分析与挖掘(微课)》
目錄
第 1章 初识深度学习 11.1 深度学习基础理论 11.1.1 机器学习与深度学习 11.1.2 神经网络基础 21.1.3 常用深度学习模型 51.2 主流深度学习框架介绍 61.2.1 TensorFlow 61.2.2 PyTorch 71.3 深度学习开发环境搭建 71.3.1 硬件环境准备 71.3.2 软件环境准备 71.3.3 安装Anaconda 91.3.4 安装TensorFlow 2 131.4 构建深度学习模型 141.4.1 MNIST数据集概述 141.4.2 数据预处理 151.4.3 构建及编译模型 161.4.4 模型训练 171.4.5 模型评估及预测 19【本章知识结构图】 21【课后习题】 22第 2章 深度学习的数据预处理技术 232.1 数据预处理技术 232.1.1 结构化数据预处理 232.1.2 非结构化数据预处理 252.2 利用OpenCV进行图像预处理 262.2.1 读取、显示和保存图像 262.2.2 图像像素的获取和编辑 282.2.3 图像几何变换 292.2.4 色彩通道分离和融合 312.2.5 颜色空间转换 312.3 利用TensorFlow进行图像预处理 322.3.1 图像缩放 322.3.2 图像裁剪 332.3.3 图像色彩调整 342.3.4 图像翻转 352.4 利用jieba进行文本预处理 362.4.1 jieba分词 362.4.2 添加自定义词典 372.4.3 关键词提取 392.4.4 词性标注 402.5 利用Keras进行文本预处理 402.5.1 Unicode编码 402.5.2 分词器 412.5.3 独热编码 412.5.4 填充序列 422.6 案例实训:对业务员工作日报进行文本处理 43【本章知识结构图】 45【课后习题】 46第3章 使用Keras开发深度学习模型 483.1 Keras模型生命周期 483.1.1 定义网络 483.1.2 编译网络 513.1.3 训练网络 513.1.4 评估网络 523.1.5 做出预测 523.2 Keras模型类型 523.2.1 顺序型API模型 523.2.2 函数式API模型 533.3 模型可视化 553.3.1 网络拓扑可视化 553.3.2 TensorBoard可视化 553.4 回调函数 583.4.1 回调函数简介 593.4.2 使用回调函数寻找最优模型 593.5 模型保存及加载 613.5.1 使用SavedModel格式保存及加载模型 613.5.2 使用JSON格式保存及加载模型 633.6 案例实训:使用Keras预测泰坦尼克号上的旅客是否生存 64【本章知识结构图】 68【课后习题】 68第4章 卷积神经网络及图像分类 704.1 卷积神经网络原理及实现 704.1.1 卷积神经网络原理 714.1.2 卷积层原理 724.1.3 卷积层TensorFlow实现 744.1.4 池化层原理 764.1.5 池化层TensorFlow实现 784.1.6 全连接层 794.2 迁移学习 794.2.1 迁移学习概述 794.2.2 使用Keras Applications实现迁移学习 814.2.3 使用TensorFlow Hub实现迁移学习 844.2.4 使用迁移学习实现花卉图像分类器 854.3 深度强化学习 904.3.1 强化学习基本概念 914.3.2 深度强化学习思路 914.3.3 Gym平台 924.3.4 使用Keras-RL2的DQN算法实现 CartPole游戏 934.4 案例实训:对CIFAR-10数据集进行图像识别 95【本章知识结构图】 99【课后习题】 99第5章 循环神经网络在文本序列中的应用 1015.1 循环神经网络 1015.1.1 词嵌入 1025.1.2 简单循环网络原理及其Keras实现 1065.1.3 长短期记忆网络原理及其Keras实现 1095.1.4 门控循环单元原理及其Keras实现 1105.2 Seq2Seq模型 1115.2.1 Seq2Seq原理 1115.2.2 注意力机制 1125.2.3 利用Keras实现Seq2Seq 1135.2.4 利用TensorFlow Addons实现Seq2Seq 1165.3 Transformer模型 1195.3.1 Transformer模型原理 1205.3.2 利用KerasNLP实现Transformer 1225.4 案例实训:中文文本分类 122【本章知识结构图】 125【课后习题】 126第6章 自编码器 1276.1 简单自编码器 1276.1.1 自编码器基本结构 1276.1.2 简单自编码器的Keras实现 1296.2 稀疏自编码器 1326.2.1 稀疏自编码器基本原理 1326.2.2 稀疏自编码器的Keras实现 1326.3 堆栈自编码器 1346.3.1 堆栈自编码器基本原理 1346.3.2 堆栈自编码器的Keras实现 1366.4 卷积自编码器 1376.4.1 卷积自编码器基本原理 1376.4.2 卷积自编码器的Keras实现 1376.5 降噪自编码器 1396.5.1 降噪自编码器基本原理 1396.5.2 降噪自编码器的Keras实现 1396.6 循环自编码器 1426.6.1 循环自编码器基本原理 1426.6.2 循环自编码器的Keras实现 1436.7 案例实训:使用自编码器建立推荐系统 144【本章知识结构图】 148【课后习题】 148第7章 生成式对抗网络 1507.1 生成式对抗网络概述 1507.1.1 生成式对抗网络基本结构 1507.1.2 生成式对抗网络常见类型 1517.2 生成式对抗网络Keras实现 1527.2.1 GAN的Keras实现 1527.2.2 DCGAN的Keras实现 1577.3 案例实训:使用GAN和DCGAN生成数字5图像 160【本章知识结构图】 164【课后习题】 164第8章 模型评估及模型优化 1678.1 模型评估 1678.1.1 数值预测评估方法 1678.1.2 概率预测评估方法 1698.2 模型优化 1728.2.1 基于梯度下降的优化 1728.2.2 自适应学习率算法 1748.2.3 网格搜索 1778.2.4 防止模型过拟合 1788.3 在tf.keras中进行模型优化 1818.3.1 在tf.keras中使用Scikit-learn优化模型 1818.3.2 使用KerasTuner进行超参数调节 1818.4 案例实训1:使用Scikit-learn优化CIFAR-10分类模型 1818.5 案例实训2:使用KerasTuner优化CIFAR-10分类模型 184【本章知识结构图】 189【课后习题】 189第9章 深度学习实验项目 1919.1 TensorFlow Datasets实验 1919.2 tf.data定义高效的输入流水线 1929.3 在tf.keras中使用Scikit-learn优化模型 1939.4 ImageDataGenerator类图像增强 1939.5 CNN模型识别手写数字 1949.6 CNN模型检测驾驶员睡意 195

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.