登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』机器学习(MATLAB版)

書城自編碼: 3880631
分類: 簡體書→大陸圖書→教材高职高专教材
作者: 马昌凤
國際書號(ISBN): 9787121457166
出版社: 电子工业出版社
出版日期: 2023-06-01

頁數/字數: /
釘裝: 平塑

售價:NT$ 296

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
阿勒泰的春天
《 阿勒泰的春天 》

售價:NT$ 230.0
如见你
《 如见你 》

售價:NT$ 234.0
人格阴影  全新修订版,更正旧版多处问题。国际分析心理学协会(IAAP)主席力作
《 人格阴影 全新修订版,更正旧版多处问题。国际分析心理学协会(IAAP)主席力作 》

售價:NT$ 305.0
560种野菜野果鉴别与食用手册
《 560种野菜野果鉴别与食用手册 》

售價:NT$ 305.0
中国官僚政治研究(一部洞悉中国政治制度演变的经典之作)
《 中国官僚政治研究(一部洞悉中国政治制度演变的经典之作) 》

售價:NT$ 286.0
锂电储能产品设计及案例详解
《 锂电储能产品设计及案例详解 》

售價:NT$ 505.0
首辅养成手册(全三册)(张晚意、任敏主演古装剧《锦绣安宁》原著小说)
《 首辅养成手册(全三册)(张晚意、任敏主演古装剧《锦绣安宁》原著小说) 》

售價:NT$ 551.0
清洁
《 清洁 》

售價:NT$ 296.0

建議一齊購買:

+

NT$ 356
《 Python网络爬虫技术与实践 》
+

NT$ 250
《 应用写作(第六版)(新编21世纪高等继续教育精品教材·公共基础课系列;本教材第五版曾获首届全国教材建设奖全国优秀教材二等奖普通高等教育“十一五”国家级规划教材 新编21世纪高等职业教育精品教材·公共基) 》
+

NT$ 207
《 学前教育学(第2版) 》
+

NT$ 270
《 光伏电站的运行维护 》
+

NT$ 472
《 人体工学与艺术设计(第3版) 》
+

NT$ 254
《 摄影摄像基础 》
內容簡介:
本书是机器学习领域的入门教材,详细阐述了机器学习的基本理论和方法。全书由12 章组成,包括绪论、线性模型与逻辑斯谛回归、决策树、贝叶斯分类器、k 近邻算法、支持向量机、人工神经网络、线性判别分析、主成分分析法、聚类、EM 算法与高斯混合聚类、集成学习等。 对每一种机器学习算法,均从算法原理的理论推导和MATLAB 实现两方面进行介绍。本书既注意保持理论分析的严谨性, 又注重机器学习算法的实用性,同时强调机器学习算法的思想和原理在计算机上的实现。全书内容选材恰当,系统性强,行文通俗流畅,具有较强的可读性。本书的建议课时为48 课时,可作为数据科学与大数据技术、计算机科学与技术、统计学以及信息与计算科学等本科专业的教材或教学参考书, 也可以作为理工科研究生机器学习课程的教材或参考书。
關於作者:
马昌凤,中共党员、三级教授、博士生导师,承担本科和硕士、博士研究生的数值分析、数学建模、机器学习和数字图像处理等10多门课程的教学工作,指导博士和硕士研究生毕业60多人。曾主持国家自然科学基金2项、中国博士后科学基金1项、广西自然科学基金2项、福建省省自然科学基金3项。在出版社出版著作2部,编著本科或研究生教材6本;发表学术论文320余篇,其中被SCI检索200余篇。曾经的学术兼职有:广西数学会常务理事、福建省数学会理事、中国数学会计算数学分会理事、中国运筹学会数学规划分会理事、福建省运筹学会副理事长。
目錄
第1 章绪论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 机器学习的基本定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 机器学习的基本术语. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 机器学习算法的分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3.1 监督学习与无监督学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3.2 分类问题与回归问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31.3.3 生成模型与判别模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41.4 学习模型的评价指标. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4.1 泛化能力. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4.2 评估方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4.3 精度与召回率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.5 学习模型的选择. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.5.1 正则化技术. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.5.2 偏差-方差分解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.6 机器学习的用途与发展简史. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.6.1 机器学习应用的基本流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101.6.2 机器学习的应用领域与发展简史. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10第2 章线性模型与逻辑斯谛回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1 线性模型的基本形式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1.1 线性回归模型的理论基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122.1.2 线性回归模型的MATLAB 实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2 逻辑斯谛回归模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.1 逻辑斯谛回归的基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162.2.2 逻辑斯谛回归的MATLAB 实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20第3 章决策树. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253.1 决策树的基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.1.1 树模型决策过程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.1.2 决策树的基本框架. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.1.3 决策树的剪枝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.2 基本决策树的改进. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.1 信息增益与ID3 决策树. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.2.2 增益率与C4.5 决策树. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.2.3 基尼指数与CART 决策树. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.3 决策树的MATLAB 实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37第4 章贝叶斯分类器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.1 贝叶斯分类器的原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.1.1 贝叶斯决策. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.1.2 朴素贝叶斯算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444.1.3 正态贝叶斯算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.2 贝叶斯算法的MATLAB 实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51第5 章k 近邻算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555.1 k 近邻算法的基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555.1.1 k 近邻算法的基本流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555.1.2 k 近邻算法的距离函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575.1.3 k 近邻算法的判别函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585.2 k 近邻算法的MATLAB 实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59第6 章支持向量机. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676.1 支持向量机的基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676.1.1 线性可分问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676.1.2 线性不可分问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716.2 核化支持向量机. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .736.3 支持向量回归模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756.4 支持向量机的MATLAB 实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78第7 章人工神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837.1 前馈神经网络简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837.1.1 M-P 神经元. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .837.1.2 感知器模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.