新書推薦:
《
怪谈百物语:不能开的门(“日本文学史上的奇迹”宫部美雪重要代表作!日本妖怪物语集大成之作,系列累销突破200万册!)
》
售價:NT$
296.0
《
罗马政治观念中的自由
》
售價:NT$
230.0
《
中国王朝内争实录:宠位厮杀
》
售價:NT$
281.0
《
凡事发生皆有利于我(这是一本读了之后会让人运气变好的书”治愈无数读者的心理自助经典)
》
售價:NT$
203.0
《
未来特工局
》
售價:NT$
254.0
《
高术莫用(十周年纪念版 逝去的武林续篇 薛颠传世之作 武学尊师李仲轩家世 凸显京津地区一支世家的百年沉浮)
》
售價:NT$
250.0
《
英国简史(刘金源教授作品)
》
售價:NT$
449.0
《
便宜货:廉价商品与美国消费社会的形成
》
售價:NT$
352.0
|
編輯推薦: |
《细说PyTorch深度学习:理论、算法、模型与编程实现》由业界人工智能专家执笔,图文并茂,娓娓道来。
兼备理论与实践,理论讲解细致,实践案例丰富。
近百个教学示例及代码实现,6大深度学习热点应用。
以Python为编程语言,兼顾前沿技术,适合对PyTorch感兴趣的各层次读者阅读。
|
內容簡介: |
《细说PyTorch深度学习:理论、算法、模型与编程实现》由业界专家编撰,采用理论描述加代码实践的思路,详细介绍PyTorch的理论知识及其在深度学习中的应用。全书分为两篇,共16章。篇为基础知识,主要介绍PyTorch的基本知识、构建开发环境、卷积网络、经典网络、模型保存和调用、网络可视化、数据加载和预处理、数据增强等内容;第二篇为高级应用,主要介绍数据分类、迁移学习、人脸检测和识别、生成对抗网络、目标检测、ViT等内容。本书内容涵盖PyTorch从入门到深度学习的各个方面,是一本基础应用与案例实操相结合的参考书。 《细说PyTorch深度学习:理论、算法、模型与编程实现》理论兼备实例,深入浅出,适合PyTorch初学者使用,也可以作为理工科高等院校本科生、研究生的教学用书,还可作为相关科研工程技术人员的参考书。
|
關於作者: |
凌峰,毕业于中国科学院大学,博士,从事机器学习、人工智能、图像处理和计算视觉的研究 与开发工作多年,发表多篇论文,拥有丰富的机器学习算法实现经验。
丁麒文,研究生毕业,主要从事图像处理、机器学习、人工智能和机器视觉领域的研究工作, 熟练运用基于Pytorch、TensorFlow等深度学习框架实现相关图像处理算法,并发表了多篇论文 。
|
目錄:
|
第1篇 基础知识
第1章 人工智能和PyTorch2
1.1 人工智能和深度学习2
1.1.1 人工智能2
1.1.2 深度学习3
1.2 深度学习框架5
1.3 PyTorch7
1.3.1 PyTorch简介7
1.3.2 PyTorch的应用领域9
1.3.3 PyTorch的应用前景10
1.4 小结12
第2章 开发环境13
2.1 PyTorch的安装13
2.2 NumPy16
2.2.1 NumPy的安装与查看17
2.2.2 NumPy对象17
2.2.3 数组21
2.2.4 数学计算26
2.3 Matplotlib32
2.3.1 Matplotlib的安装和简介33
2.3.2 Matplotlib Figure图形对象35
2.4 Scikit-Learn47
2.5 小结48
第3章 PyTorch入门49
3.1 PyTorch的模块49
3.1.1 主要模块49
3.1.2 辅助模块53
3.2 张量54
3.2.1 张量的数据类型55
3.2.2 创建张量56
3.2.3 张量存储61
3.2.4 维度操作63
3.2.5 索引和切片65
3.2.6 张量运算67
3.3 torch.nn模块76
3.3.1 卷积层76
3.3.2 池化层80
3.3.3 激活层87
3.3.4 全连接层91
3.4 自动求导92
3.5 小结95
第4章 卷积网络96
4.1 卷积网络的原理96
4.1.1 卷积运算96
4.1.2 卷积网络与深度学习98
4.2 NumPy建立神经网络99
4.3 PyTorch建立神经网络101
4.3.1 建立两层神经网络101
4.3.2 神经网络参数更新102
4.3.3 自定义PyTorch的nn模块103
4.3.4 权重共享105
4.4 全连接网络107
4.5 小结111
第5章 经典神经网络112
5.1 VGGNet112
5.1.1 VGGNet的结构112
5.1.2 实现过程114
5.1.3 VGGNet的特点115
5.1.4 查看PyTorch网络结构116
5.2 ResNet118
5.2.1 ResNet的结构118
5.2.2 残差模块的实现120
5.2.3 ResNet的实现122
5.2.4 ResNet要解决的问题126
5.3 XceptionNet128
5.3.1 XceptionNet的结构128
5.3.2 XceptionNet的实现131
5.4 小结135
第6章 模型的保存和调用136
6.1 字典状态(state_dict)136
6.2 保存和加载模型138
6.2.1 使用ate_dict加载模型138
6.2.2 保存和加载完整模型139
6.2.3 保存和加载Checkpoint用于推理、继续训练139
6.3 一个文件保存多个模型140
6.4 通过设备保存和加载模型141
6.5 小结143
第7章 网络可视化144
7.1 HiddenLayer可视化144
7.2 PyTorchViz可视化146
7.3 TensorboardX可视化149
7.3.1 简介和安装149
7.3.2 使用TensorboardX150
7.3.3 添加数字151
7.3.4 添加图片152
7.3.5 添加直方图153
7.3.6 添加嵌入向量154
7.4 小结156
第8章 数据加载和预处理157
8.1 加载PyTorch库数据集157
8.2 加载自定义数据集159
8.2.1 下载并查看数据集159
8.2.2 定义数据集类161
8.3 预处理164
8.4 小结168
第9章 数据增强169
9.1 数据增强的概念169
9.1.1 常见的数据增强方法170
9.1.2 常用的数据增强库171
9.2 数据增强的实现172
9.2.1 中心裁剪173
9.2.2 随机裁剪174
9.2.3 缩放175
9.2.4 水平翻转176
9.2.5 垂直翻转177
9.2.6 随机角度旋转178
9.2.7 色度、亮度、饱和度、对比度的变化179
9.2.8 随机灰度化180
9.2.9 将图形加上padding181
9.2.10 指定区域擦除182
9.2.11 伽马变换183
9.3 小结184
第2篇 高级应用
第10章 图像分类186
10.1 CIFAR10数据分类186
10.1.1 定义网络训练数据187
10.1.2 验证训练结果192
10.2 数据集划分193
10.3 猫狗分类实战195
10.3.1 猫狗数据预处理195
10.3.2 建立网络猫狗分类196
10.4 小结199
第11章 迁移学习200
11.1 定义和方法200
11.2 蚂蚁和蜜蜂分类实战202
11.2.1 加载数据202
11.2.2 定义训练方法204
11.2.3 可视化预测结果205
11.2.4 迁移学习方法一:微调网络206
11.2.5 迁移学习方法二:特征提取器208
11.3 小结209
第12章 人脸检测和识别210
12.1 人脸检测210
12.1.1 定义和研究现状210
12.1.2 经典算法213
12.1.3 应用领域216
12.2 人脸识别217
12.2.1 定义和研究现状217
12.2.2 经典算法220
12.2.3 应用领域221
12.3 人脸检测与识别实战222
12.3.1 Dlib人脸检测222
12.3.2 基于MTCNN的人脸识别225
12.4 小结227
第13章 生成对抗网络228
13.1 生成对抗网络简介228
13.2 数学模型230
13.3 生成手写体数字图片实战233
13.3.1 基本网络结构233
13.3.2 准备数据234
13.3.3 定义网络和训练235
13.3.4 生成结果分析237
13.4 生成人像图片实战238
13.4.1 DCGAN简介239
13.4.2 数据准备239
13.4.3 生成对抗网络的实现241
13.5 小结250
第14章 目标检测251
14.1 目标检测概述251
14.1.1 传统目标检测算法的研究现状252
14.1.2 深度学习目标检测算法的研究现状252
14.1.3 应用领域253
14.2 检测算法模型253
14.2.1 传统的目标检测模型253
14.2.2 基于深度学习的目标检测模型255
14.3 目标检测的基本概念259
14.3.1 IoU259
14.3.2 NMS261
14.4 Faster R-CNN目标检测264
14.4.1 网络原理265
14.4.2 实战269
14.5 小结273
第15章 图像风格迁移274
15.1 风格迁移概述274
15.2 固定风格固定内容的迁移277
15.2.1 固定风格固定内容迁移的原理277
15.2.2 PyTorch实现固定风格迁移280
15.3 快速风格迁移288
15.3.1 快速迁移模型的原理288
15.3.2 PyTorch实现快速风格迁移290
15.4 小结297
第16章 ViT298
16.1 ViT详解298
16.1.1 Transformer模型中的Attention注意力机制298
16.1.2 视觉Transformer模型详解302
16.2 ViT图像分类实战305
16.2.1 数据准备305
16.2.2 定义ViT模型306
16.2.3 定义工具函数311
16.2.4 定义训练过程314
16.2.5 运行结果317
16.3 小结318
参考文献319
|
內容試閱:
|
21世纪大国之间的竞争归根结底是人才的竞争,人工智能作为目前促进产业升级的关键技术,在学术界和工业界都有广泛的应用,被国家提高到了战略高度。广大国民掌握人工智能技术将极大地促进生产力发展,提升国家综合竞争力,为国家发展做出技术上的贡献。出于这样的思考,本书为有志于在21世纪从事人工智能事业的读者编写,希望通过本书为促进国家人工智能技术的进步做出微薄贡献。
众所周知,在国家层面,人工智能技术已经成为社会经济发展的新引擎,该技术已经被应用于人们日常生活的方方面面。PyTorch是实现人工智能的重要技术途径之一,学好PyTorch将十分有利于掌握人工智能技术。
人工智能技术作为新一轮产业变革的核心驱动技术,将进一步释放历次科技革命和产业变革积蓄的巨大势能,进一步促进经济巨大发展,形成宏观经济、微观经济等领域的社会智能化新需求,激发新技术、新产品、新产业、新业态、新模式不断涌现,引发社会经济结构重大变革,深刻改变国民日常生产生活方式和经济社会生活思维模式,实现国家生产力的跨越提升。
我国经济社会发展已经进入了新阶段,实现共同富裕已经成为当前主要的社会发展目标和任务,需要加快人工智能应用于实体经济产业领域,提升人工智能技术产业化水平,为我国社会发展注入强大的技术支持和核心科技
动力。
随着我国社会发展和工业升级的需求,人工智能技术人才需求越来越大,但是由于人工智能技术是一门交叉学科,涉及的基础知识繁杂,因此不易入门和学习。为了降低人工智能技术的入门门槛,本书从理论出发,结合实例,尽量用简单易懂的语言讲述高深的知识点,为有志于从事基于PyTorch进行人工智能开发的从业者提供一本好的PyTorch技术参考书。
本书内容
本书结合多年PyTorch使用经验与实际工程应用案例,将PyTorch的编程方法与技巧详细地讲解给读者。本书在讲解过程中步骤详尽、内容新颖,辅以相应的图示,使读者在阅读时能一目了然,从而快速掌握书中所讲的内容。
第一篇为基础知识,包括以下章节:
第1章 人工智能和PyTorch 第2章 开发环境
第3章 PyTorch入门 第4章 卷积网络
第5章 经典神经网络 第6章 模型的保存和调用
第7章 网络可视化 第8章 数据加载和预处理
第9章 数据增强
第二篇为高级应用,包括以下章节:
第10章 图像分类 第11章 迁移学习
第12章 人脸检测和识别 第13章 生成对抗网络
第14章 目标检测 第15章 图像风格迁移
第16章 ViT
本书特点
本书由资深业界专家精心编写,内容涵盖PyTorch的基础知识、经典算法、模型训练及编程实现。
从PyTorch的安装与基本知识开始,首先介绍和深度学习相关的库NumPy和Matplotlib、Scikit-Learn,然后逐步深入细致地讲解各个知识点,确保读者可以快速上手。
基础理论结合热点应用,比如,介绍了PyTorch在经典的神经网络、卷积网络、模型调用和保存、数据可视化、数据增强等方面的编程实现,介绍了PyTorch在人脸识别、生成对抗网络、图像分类、目标检测、迁移学习中的应用以及前沿技术热点Vit等。
每个知识点在讲解的过程中,配套大量示例,全书涉及100多个编程实例,向读者展示PyTorch在深度学习中的应用。
读者对象
本书适合PyTorch初学者和期望应用PyTorch技术进行机器学习开发的读者,具体说明如下:
初学PyTorch的技术人员
广大从事深度学习的科研工作人员
大、中专院校的教师和学生
相关培训机构的教师和学员
刚参加工作实习的深度学习“菜鸟”
PyTorch深度学习技术爱好者
配书源码
本书提供了程序源代码,读者可扫描下面的二维码,按扫描后的页面提示填写你的邮箱,把下载链接转发到邮箱中下载。如果下载有问题或阅读中发现问题,请用电子邮件联系booksaga@126.com,邮件主题写“细说PyTorch深度学习:理论、算法、模型与编程实现”。
读者服务
为了方便解决本书的疑难问题,读者朋友在学习过程中遇到与本书有关的技术问题,可以关注“算法仿真”公众号获取帮助,我们将竭诚为您 服务。
本书由凌峰、丁麒文编著,虽然作者在本书的编写过程中力求叙述准确、完善,但由于水平有限,书中疏漏之处在所难免,希望广大读者和同仁及时指出,共同促进本书质量的提高。
最后,再次希望本书能为读者的学习和工作提供帮助!
编者
2023年3月
|
|