◎编辑推荐 本书是全球流行的抽象代数入门经典教材,自1967年初版以来,已畅销50余年。作者约翰·弗雷利(John B. Fraleigh)出生于1930年,目前已90多岁高龄,第7版是他亲自修订的终版。本书被全世界众多大学的近世代数/抽象代数课选用为教材,比如美国哥伦比亚大学、加州大学伯克利分校、加州大学圣地亚哥分校、加州大学尔湾分校、圣路易斯华盛顿大学、波士顿大学、伊利诺伊大学、科罗拉多大学、肯塔基大学、犹他大学等。书中各处穿插着由作者的好友美国著名数学教育家和数学史家维克多·卡茨(Victor J. Katz)所撰写的历史评注(Historical Note),帮助读者了解相关的历史背景,这在其他数学教材中难以见到,也是本书的一大特色。
◎作者简介
约翰·弗雷利(John B. Fraleigh)是美国罗德岛大学数学与应用数学科学系的荣休教授,一生致力于数学教育,获得了诸多赞誉,罗德岛大学还设立了以他名字命名的奖学金。他出版过多部有影响力的数学教材,《抽象代数基础教程》是其代表作之一,多年来一直被奉为经典,长销不衰。
目錄:
◎图书目录
Preface
Sets and RelationsGROUPS AND SUBGROUPSIntroduction and ExamplesBinary OperationsIsomorphic Binary StructuresGroupsSubgroupsCyclic GroupsGenerators and Cayley DigraphsPERMUTATIONS, COSETS, AND DIRECT PRODUCTSGroups of PermutationsOrbits, Cycles, and the Alternating GroupsCosets and the Theorem of LagrangeDirect Products and Finitely Generated Abelian GroupsPlane Isometries
III. HOMOMORPHISMS AND FACTOR GROUPS
HomomorphismsFactor GroupsFactor-Group Computations and Simple GroupsGroup Action on a SetApplications of G-Sets to CountingRINGS AND FIELDSRings and FieldsIntegral DomainsFermat‘s and Euler’s TheoremsThe Field of Quotients of an Integral DomainRings of PolynomialsFactorization of Polynomials over a FieldNoncommutative ExamplesOrdered Rings and FieldsIDEALS AND FACTOR RINGSHomomorphisms and Factor RingsPrime and Maximal IdeasGroebner Bases for IdealsEXTENSION FIELDSIntroduction to Extension FieldsVector SpacesAlgebraic ExtensionsGeometric ConstructionsFinite Fields
VII. ADVANCED GROUP THEORY
Isomorphism TheoremsSeries of GroupsSylow TheoremsApplications of the Sylow TheoryFree Abelian GroupsFree GroupsGroup Presentations
VIII. AUTOMORPHISMS AND GALOIS THEORY
Automorphisms of FieldsThe Isomorphism Extension TheoremSplitting FieldsSeparable ExtensionsTotally Inseparable ExtensionsGalois TheoryIllustrations of Galois TheoryCyclotomic ExtensionsInsolvability of the Quintic
Appendix: Matrix Algebra
Bibliography
Notations
Index