登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』商业分析:基于数据科学及人工智能技术的决策支持系统(原书第11版)

書城自編碼: 3753384
分類: 簡體書→大陸圖書→計算機/網絡人工智能
作者: [美]拉姆什·沙尔达,[美]杜尔森·德伦,[美]埃弗瑞姆·特
國際書號(ISBN): 9787111704355
出版社: 机械工业出版社
出版日期: 2022-05-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:NT$ 1015

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
量价关系——透视股票涨跌脉络
《 量价关系——透视股票涨跌脉络 》

售價:NT$ 340.0
创伤与记忆:身体体验疗法如何重塑创伤记忆     [美]彼得·莱文
《 创伤与记忆:身体体验疗法如何重塑创伤记忆 [美]彼得·莱文 》

售價:NT$ 295.0
复原力
《 复原力 》

售價:NT$ 345.0
近代中国思维方式的演变(王中江著作系列)
《 近代中国思维方式的演变(王中江著作系列) 》

售價:NT$ 950.0
我可以近乎孤独地度过一生
《 我可以近乎孤独地度过一生 》

售價:NT$ 440.0
二十四节气生活美学
《 二十四节气生活美学 》

售價:NT$ 340.0
古文观止(上+下)(2册)高中生初中生阅读 国学经典丛书原文+注释+译文古诗词大全集名家精译青少年启蒙经典读本无障碍阅读精装中国古代著名文学书籍国学经典
《 古文观止(上+下)(2册)高中生初中生阅读 国学经典丛书原文+注释+译文古诗词大全集名家精译青少年启蒙经典读本无障碍阅读精装中国古代著名文学书籍国学经典 》

售價:NT$ 440.0
宠物革命:动物与现代英国生活的形成
《 宠物革命:动物与现代英国生活的形成 》

售價:NT$ 360.0

建議一齊購買:

+

NT$ 810
《 机器学习 》
+

NT$ 505
《 联邦学习:算法详解与系统实现 》
+

NT$ 894
《 机器学习实战:基于Scikit-Learn Keras和TensorFlow(原书第2版) 》
+

NT$ 338
《 人工智能原理及其应用(第4版) 》
+

NT$ 342
《 详解FPGA:人工智能时代的驱动引擎 》
+

NT$ 407
《 TensorFlow深度学习项目实战 》
內容簡介:
本书是对分析 (或商业分析) 的技术以及用于设计和开发决策支持系统的基本方法、技术和软件的全面介绍。除了传统的决策支持应用程序外,本书还介绍了人工智能、机器学习、机器人技术、聊天机器人、物联网和与互联网相关的技术,通过提供示例、产品、服务和练习阐述各种类型的分析。
目錄
前言致谢作者简介部分 分析和人工智能简介第1章 用于决策支持的商务智能、分析、数据科学和人工智能系统概述21.1 开篇小插曲:通力电梯和自动扶梯公司的智能系统是如何工作的31.2 不断变化的商业环境、决策支持与分析需求51.3 决策过程和计算机化决策支持框架81.4 计算机决策支持向商务智能/分析/数据科学的发展201.5 分析概述291.6 相关领域中的分析示例371.7 人工智能简介501.8 分析与人工智能的融合581.9 分析生态系统综述631.10 本书规划641.11 相关资源65本章要点66讨论67参考文献67第2章 人工智能:概念、驱动力、主要技术和商业应用702.1 开篇小插曲:INRIX解决了交通问题712.2 人工智能概论732.3 人类智能与计算机智能792.4 主要人工智能技术和衍生产品822.5 人工智能对决策的支持912.6 人工智能在会计中的应用952.7 人工智能在金融服务中的应用972.8 人工智能在人力资源管理中的应用1012.9 人工智能在营销、广告和客户关系管理中的应用1032.10 人工智能在生产运营管理中的应用107本章要点109讨论110参考文献111第3章 数据性质、统计建模和可视化1133.1 开篇小插曲:SiriusXM通过数据驱动型营销吸引新一代的广播消费者1143.2 数据的性质1173.3 简单的数据分类法1203.4 数据预处理的艺术和科学1243.5 用于业务分析的统计建模1333.6 用于推论统计的回归建模1433.7 业务报告1543.8 数据可视化1573.9 不同类型的图表和图形1623.10 视觉分析的出现1653.11 信息仪表板172本章要点177讨论177参考文献178第二部分 预测性分析/机器学习第4章 数据挖掘过程、方法和算法1824.1 开篇小插曲:美国迈阿密戴德警察局使用预测性分析来预测和打击犯罪1824.2 数据挖掘概念1864.3 数据挖掘应用1964.4 数据挖掘过程1994.5 数据挖掘方法2064.6 数据挖掘软件工具2214.7 数据挖掘隐私问题、误解和失误227本章要点231讨论232参考文献233第5章 用于预测性分析的机器学习技术2345.1 开篇小插曲:预测建模有助于更好地理解和管理复杂的医疗程序2345.2 神经网络的基本概念2375.3 神经网络架构2415.4 支持向量机2455.5 基于过程的支持向量机使用方法2545.6 用于预测的邻近法2565.7 朴素贝叶斯分类法2605.8 贝叶斯网络2685.9 集成建模274本章要点286讨论287参考文献288第6章 深度学习和认知计算2906.1 开篇小插曲:利用深度学习和人工智能打击欺诈2916.2 深度学习介绍2946.3 “浅”神经网络基础2996.4 基于神经网络系统的开发流程3086.5 阐明ANN黑箱原理3146.6 深度神经网络3176.7 卷积神经网络3236.8 循环网络和长短期记忆网络3346.9 实现深度学习的计算机框架3416.10 认知计算344本章要点354讨论356参考文献357第7章 文本挖掘、情感分析和社交分析3607.1 开篇小插曲:Amadori集团将消费者情感转化为近实时销售3617.2 文本分析和文本挖掘概述3637.3 自然语言处理3697.4 文本挖掘应用3757.5 文本挖掘过程3827.6 情感分析3907.7 Web挖掘概述4017.8 搜索引擎4067.9 Web使用情况挖掘(Web分析)4137.10 社交分析419本章要点428讨论429参考文献430第三部分 规范性分析和大数据第8章 规范性分析:优化与仿真4348.1 开篇小插曲:费城学区使用规范性分析来寻找外包巴士路线的解决方案4358.2 基于模型的决策4368.3 决策支持的数学模型的结构4428.4 确定性、不确定性和风险4448.5 电子表格决策模型4468.6 数学规划优化4508.7 多重目标、灵敏度分析、假设分析和单变量求解4608.8 基于决策表和决策树的决策分析4648.9 仿真简介4668.10 视觉交互仿真473本章要点478讨论479参考文献479第9章 大数据、云计算和位置分析:概念和工具4819.1 开篇小插曲:在电信公司中使用大数据方法分析客户流失情况4829.2 大数据定义4859.3 大数据分析基础4909.4 大数据技术4949.5 大数据与数据仓库5039.6 内存分析和Apache Spark5089.7 大数据和流分析5149.8 大数据提供商和平台5199.9 云计算和业务分析5269.10 基于位置的组织分析537本章要点544讨论544参考文献545第四部分 机器人、社交网络、人工智能与物联网第10章 机器人:工业和消费者领域的应用54810.1 开篇小插曲:机器人为患者和儿童提供情感支持54810.2 机器人技
內容試閱
分析已经成为这十年的技术驱动力。IBM、Oracle、Microsoft等公司正在创建专注于分析的新组织单元,这有助于企业提高效率。决策者正在利用数据和计算机工具做出更好的决策,甚至消费者也在直接或间接地使用分析工具,来对购物、医疗保健和娱乐等日常活动做出决策。商业分析(BA)/数据科学(DS)/决策支持系统(DSS)/商务智能(BI)领域发展迅速,更专注于创新的方法和应用程序,以利用甚至在之前的一段时间没有捕获到(更不用说以任何重要的方式进行分析)的数据流。客户关系管理、银行和金融业、医疗保健和医药、体育和娱乐、制造业和供应链管理、公用事业和能源,以及几乎所有可以想象的行业每天都会出现新的应用程序。本书的主题是用于支持企业决策的分析、数据科学和人工智能技术。除了传统的决策支持应用程序外,此版本还通过介绍人工智能、机器学习、机器人技术、聊天机器人、物联网和与互联网相关的使能技术,并提供示例,带领读者深入了解各种类型的分析。我们强调这些技术是现代商业分析系统的新兴组成部分。人工智能技术通过实现自主决策和支持决策过程中的步骤,对决策产生重大影响。人工智能和分析相互支持,通过协同来协助决策。本书的目的是向读者介绍通常称为分析或商业分析(众所周知的其他名称还有决策支持系统、执行信息系统和商务智能等)的技术,可以等价地使用这些术语。本书介绍用于设计和开发这些系统的基本方法及技术。此外,我们还介绍人工智能的基本原理以及独立的决策支持规程。我们遵循EEE(接触、体验、探索)方法来介绍这些主题。本书主要介绍各种分析技术以及它们的应用。我们的想法是,读者将从其他组织如何使用分析做出决策或获得竞争优势受到启发。我们相信,这种接触学习的方法以及如何实现它是学习分析的关键。在描述这些技术时,我们还介绍了可用于开发此类应用程序的特定软件工具。本书不局限于任何一个软件工具,因此读者可以使用任何数量的可用软件工具体验这些技术。每一章都有具体建议,但是读者可以使用许多不同的软件工具。后,我们希望这种接触和体验能够激励读者探索这些技术在各自领域的潜力。第11版中所做的改进主要集中在三个方面:重组、内容更新(包括人工智能、机器学习、聊天机器人和机器人技术)和更清晰的焦点。尽管本书内容有了许多变化,但我们仍然保持了过去几十年使本书成为畅销书的全面性和用户友好性。我们还优化了本书的篇幅和内容:去除了旧的、多余的材料,添加和组合了与当前趋势相符的材料。后,我们提供了没有在任何其他书中出现过的准确和更新的材料。接下来我们将详细描述第11版的变化。第11版有什么新内容为了改进内容并与不断发展的技术趋势保持同步,本版本进行了一次重大重组,以更好地反映当前对分析及其支持的技术的关注。本书的前三个版本从传统的DSS转换为BI,然后从BI转换为BA,并与Teradata大学网络(TUN)建立了紧密的联系。以下总结了对本版本所做的主要更改。新组织。本书现在主要围绕两个主题进行组织:不同类型的分析的动机、概念和方法(主要集中在预测性和规范性分析上);驱动现代分析领域的新技术,如人工智能、机器学习、深度学习、机器人技术、物联网、智能/机器人协作辅助系统等。全书共五部分。部分(第1~3章)介绍分析与人工智能:第1章介绍决策支持和相关技术的历程,首先简要介绍经典的决策和决策支持系统,然后介绍商务智能,后介绍分析、大数据和人工智能;第2章对人工智能进行更深入的介绍;第3章介绍数据问题以及描述性分析,包括统计概念和可视化。第二部分(第4~7章)介绍预测性分析和机器学习:第4章介绍数据挖掘的应用和数据挖掘过程;第5章介绍用于预测性分析的机器学习技术;第6章介绍深度学习和认知计算;第7章关注文本挖掘应用以及Web分析,包括社交分析、情感分析等。第三部分(第8和9章)介绍规范性分析和大数据:第8章讨论规范性分析,包括优化和仿真;第9章介绍大数据分析的更多细节,还介绍基于云的分析和位置分析。第四部分(第10~13章)介绍机器人、社交网络、人工智能和物联网:第10章介绍工业和消费者应用中的机器人,并研究这些设备对未来社会的影响;第11章着重于协作系统、众包;第12章回顾个人助理、聊天机器人,以及这个领域令人兴奋的发展;第13章研究物联网及其在决策支持和智能社会中的潜力。第五部分(第14章)简要讨论分析以及人工智能的安全、隐私和社会层面的内容。新的章节。我们应该注意到,本书包含的几章已在《商务智能:数据分析的管理视角(原书第4版)》(Pearson,2018)(以下简称BI4e)中提供。这些章节的结构和内容在编入本书之前已经有所更新,但下面各章的变化更为显著。当然,BI4e的一些章节并没有包含在本书的前几个版本中。第2章 该章介绍了人工智能的基本原理,概述了人工智能的优点,并将人工智能与人类智能进行了比较,描述了人工智能的应用领域。通过会计、金融服务、人力资源管理、市场营销和CRM以及生产运营管理中的示例应用说明了人工智能给业务带来的好处(全新)。第6章

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.