登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』基于深度学习的道路短期交通状态时空序列预测

書城自編碼: 3747763
分類: 簡體書→大陸圖書→計算機/網絡人工智能
作者: 崔建勋 等
國際書號(ISBN): 9787121430190
出版社: 电子工业出版社
出版日期: 2022-04-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:NT$ 500

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
甲骨拼合六集
《 甲骨拼合六集 》

售價:NT$ 1520.0
视觉美食家:商业摄影实战与创意解析
《 视觉美食家:商业摄影实战与创意解析 》

售價:NT$ 602.0
中国经济发展的新阶段:机会与选择
《 中国经济发展的新阶段:机会与选择 》

售價:NT$ 454.0
DK月季玫瑰百科
《 DK月季玫瑰百科 》

售價:NT$ 959.0
为你想要的生活
《 为你想要的生活 》

售價:NT$ 301.0
关键改变:如何实现自我蜕变
《 关键改变:如何实现自我蜕变 》

售價:NT$ 352.0
超加工人群:为什么有些食物让人一吃就停不下来
《 超加工人群:为什么有些食物让人一吃就停不下来 》

售價:NT$ 454.0
历史的教训(浓缩《文明的故事》精华,总结历史教训的独特见解)
《 历史的教训(浓缩《文明的故事》精华,总结历史教训的独特见解) 》

售價:NT$ 286.0

內容簡介:
这本书系统阐述了深度学习方法论在道路短期交通状态时空序列预测领域的研究成果。需要着重说明以下几点:(1)领域限定在了道路交通,因为交通是个大系统,存在着航空、水运、道路等多种运输方式,而本书所阐述的研究均是针对道路交通领域的数据以及面向道路交通领域的应用;(2)本书所讨论的研究问题是道路短期交通状态时空序列预测问题,该问题是时空数据挖掘领域中时空预测问题的一个重要子集,在本书的第1章中将会对这个问题进行数学上的形式化定义;(3)本书针对道路短期交通状态时空序列预测问题的讨论,完全是基于深度学习的方法论,所参考的文献绝大部分发表于2017年以后,并不涵盖前人对该研究问题所采用的全部方法论(如ARIMA,卡尔曼滤波、SVR等)。
關於作者:
崔建勋,哈尔滨工业大学 交通学院 副教授硕士生导师,长期从事人工智能与道路交通的交叉领域研究,主要研究方向包括基于深度学习的短时交通状态预测、基于深度强化学习的自动驾驶决策规划与控制等。
目錄
目录
第 1 章道路短期交通状态时空序列预测总论.................................................... 001
1.1 时空数据............................................................................................................... 001
1.2 时空数据挖掘....................................................................................................... 002
1.3 道路短期交通状态时空序列预测 ....................................................................... 003
1.3.1 问题描述 .................................................................................................. 003
1.3.2 核心挑战 .................................................................................................. 005
1.3.3 问题分类 .................................................................................................. 007
1.4 道路短期交通状态时空序列预测研究概要性综述 ........................................... 012
1.5 基于深度学习的道路短期交通状态时空序列预测建模一般性框架................ 014
1.6 本章小结............................................................................................................... 015
第 1 篇基于深度学习的网格化道路交通状态时空序列预测
第 2 章基于 2D 图像卷积神经网络的时空相关性建模................................... 018
2.1 ST-ResNet ............................................................................................................. 020
2.1.1 问题提出 .................................................................................................. 020
2.1.2 历史交通状态切片数据的获取............................................................... 020
2.1.3 预测模型 .................................................................................................. 022
2.1.4 训练算法 .................................................................................................. 026
2.2 MDL...................................................................................................................... 027
2.2.1 问题提出 .................................................................................................. 027
2.2.2 预测模型 .................................................................................................. 029
2.2.3 训练算法 .................................................................................................. 035
2.3 MF-STN ................................................................................................................ 036
2.3.1 问题提出 .................................................................................................. 037
2.3.2 预测模型 .................................................................................................. 037
2.3.3 训练算法 .................................................................................................. 040
2.4 DeepLGR[23] .......................................................................................................... 042
2.4.1 问题提出 .................................................................................................. 043
2.4.2 预测模型 .................................................................................................. 043
2.4.3 模型小结 .................................................................................................. 048
2.5 ST-NASNet ........................................................................................................... 048
2.5.1 问题提出 .................................................................................................. 051
2.5.2 预测模型 .................................................................................................. 051
2.5.3 训练算法 .................................................................................................. 054
2.6 本章小结............................................................................................................... 055
第 3 章基于 2D 图像卷积与循环神经网络相结合的时空相关性建模....... 057
3.1 STDN[25]................................................................................................................ 058
3.1.1 问题提出 .................................................................................................. 059
3.1.2 预测模型 .................................................................................................. 059
3.1.3 训练算法 .................................................................................................. 066
3.2 ACFM[26] ............................................................................................................... 067
3.2.1 问题提出 .................................................................................................. 067
3.2.2 预测模型 .................................................................................................. 068
3.2.3 模型拓展 .................................................................................................. 073
3.2.4 训练算法 .................................................................................................. 075
3.3 PredRNN[27] .......................................................................................................... 076
3.4 PredRNN [28] ...................................................................................................... 081
3.4.1 模型架构 .................................................................................................. 082
3.4.2 Casual-LSTM............................................................................................ 083
3.4.3 GHU.......................................................................................................... 084
3.5 MIM[29].................................................................................................................. 084
3.6 SA-ConvLSTM[30]................................................................................................. 088
3.6.1 模型背景 .................................................................................................. 089
3.6.2 模型构造 .................................................................................................. 090
3.7 本章小结............................................................................................................... 092
第 4 章基于 3D 图像卷积的时空相关性建模..................................................... 094
4.1 问题提出............................................................................................................... 095
4.2 预测模型............................................................................................................... 095
4.2.1 近期时空相关性捕获模块....................................................................... 096
4.2.2 短期时空相关性捕获模块....................................................................... 098
4.2.3 特征融合模块........................................................................................... 099
4.2.4 预测模块 .................................................................................................. 099
4.2.5 损失函数 .................................................................................................. 099
4.3 训练算法............................................................................................................... 100
4.4 本章小结............................................................................................................... 100
第 2 篇基于深度学习的拓扑化道路交通状态时空序列预测
第 5 章基于 1D 图像卷积与卷积图神经网络相结合的时空相关性建模 .. 102
5.1 STGCN[

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.