登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』概率思维预测未来

書城自編碼: 3729380
分類: 簡體書→大陸圖書→管理一般管理學
作者: 威廉·庞德斯通 著
國際書號(ISBN): 9787518093342
出版社: 中国纺织出版社
出版日期: 2022-03-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:NT$ 560

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
便宜货:廉价商品与美国消费社会的形成
《 便宜货:廉价商品与美国消费社会的形成 》

售價:NT$ 352.0
读书是一辈子的事(2024年新版)
《 读书是一辈子的事(2024年新版) 》

售價:NT$ 352.0
乐道文库·什么是秦汉史
《 乐道文库·什么是秦汉史 》

售價:NT$ 367.0
汉娜·阿伦特与以赛亚·伯林 : 自由、政治与人性
《 汉娜·阿伦特与以赛亚·伯林 : 自由、政治与人性 》

售價:NT$ 500.0
女性与疯狂(女性主义里程碑式著作,全球售出300万册)
《 女性与疯狂(女性主义里程碑式著作,全球售出300万册) 》

售價:NT$ 500.0
药食同源中药鉴别图典
《 药食同源中药鉴别图典 》

售價:NT$ 305.0
设计中的比例密码:建筑与室内设计
《 设计中的比例密码:建筑与室内设计 》

售價:NT$ 398.0
冯友兰和青年谈心系列:看似平淡的坚持
《 冯友兰和青年谈心系列:看似平淡的坚持 》

售價:NT$ 254.0

建議一齊購買:

+

NT$ 384
《 质量管理:整合供应链(第6版)(工商管理经典译丛·运营管理系列) 》
+

NT$ 365
《 领导力精进:成就极致领导力的21个管理细节(改善这21个带团队的细节,你和团队将成就更高的事业!麦肯锡、高盛等企业高管共读) 》
+

NT$ 400
《 解码OD——组织成长的底层逻辑与创新实践 》
+

NT$ 347
《 聘谁(2019版):用A级别招聘法找到更适合的人 》
+

NT$ 293
《 华为团队管理法 》
+

NT$ 490
《 全面预算管理:让企业全员奔跑 》
編輯推薦:
概率思维是思考未来的核心要素。对抗不确定性,抓住未来的胜算。经典畅销书《无价》《知识大迁移》作者庞德斯通全新力作。
电子科技大学教授周涛领衔翻译,普林斯顿大学天体物理学家、末日论证提出者理查德戈特,畅销书作家、《怀疑论者》杂志创始人迈克尔·舍默联袂推荐。
湛庐文化出品。
內容簡介:
我们该如何应对这个不确定性的世界?人类还能生存多久?我们的爱情还能存续多久?百老汇的音乐剧还能上映多久人类生活在一个虚拟的世界中吗?真的存在多重世界吗?宇宙中还有其他智慧生命存在吗?隐藏在这些问题背后的,就是概率思维。
作者庞德斯通从贝叶斯定理入手,向读者展示了如何用概率思维预测未来。从爱情的持续时间到百老汇的音乐剧还能上映多久,从放肆的哲学家到睡美人悖论,概率思维才是思考未来的要素。
我们要如何用概率思维来理解世界、宇宙和生命。只有了解那些看似疯狂的语言,我们才能更好地面对现在的生活。我们必须变得比以往更聪明、更明智、更善良、更小心、更幸运,才能赢得长远的未来。在这样的时代,每个人都必须掌握概率思维。
關於作者:
威廉·庞德斯通
美国经典畅销书作家,已出版《无价》《知识大迁移》《剪刀石头布》《谁是谷歌想要的人才?》等十几部畅销书,两次获得“普利策奖”提名。
《哈佛商业评论》《纽约时报》《哈珀斯》《时尚先生》等世界知名杂志长期撰稿人。
目錄
译者序 预测是一朵带刺的玫瑰
前 言 人类将生存多久

部分 预测未来的概率思维
第 1 章 如何预测未来
签署浮士德式的魔鬼条约,你就是那个待售的产品
时间的秘密算法,没有什么能够长久
爱情统计学,我们的爱情还能持续多久
有多少百老汇音乐剧即将下映
你未来需要继续等待的时间和你已经等待的时间一样长
第 2 章 斯芬克斯之谜,关于概率的智力冒险
贝叶斯的魔力8号球
斯芬克斯之谜,我们为生死而战
第 3 章 神奇的贝叶斯定理,做怀疑一切的人
贝叶斯的哲学
10还是1000,瓮里究竟有多少个球
合格的科学家,怀疑一切的人
第 4 章 暗黑推算史,哥白尼原理的启示
卡特灾难,观察者的选择效应
为什么宇宙存在,而不是万物虚无
关于末日论证的讨论
哥白尼原理的启示
末日之后的未来
第 5 章 末日论证的12场辩论,不从一次结果下结论,要找到更多的证据
我是特殊的个体
现在是特殊的时间
我们并不是亚当和夏娃
总有人在人类早期出生,但那个人为什么不是我呢
没有一本记录全体人类的花名册
末日论者预测的前后矛盾
末日论证无法被证伪
不能用旧证据进行预测
不能用主观证据进行预测
永生之人可以幸免于世界末日
我们会进化成更高级的物种
主动寻找更多的证据
第 6 章 阿尔伯克基的24条狗,不需要先验概率的预测方法
可以预测一切的万金油
分形与尺度不变性
布拉德·皮特的钱包里有多少现金
世界上长寿的人
第 7 章 婴儿的名字与原子弹碎片,用林迪效应做预测
将齐普夫定律应用于时间
历史越悠久的企业越拥有更光明的未来
巴菲特的价值投资,林迪效应的应用
对公司生存的预测也是人类历史的缩影
第 8 章 “睡美人”悖论,硬币朝上的可能性有多大
概率是错误的工具吗
在远方拥有一个兄弟姐妹的概率
鸭子还是兔子
第 9 章 放肆的哲学家悖论,拥有无限观察者的贝叶斯定理
我们或许都将成为虚拟人
抢椅子游戏中的椅子到底有多少
这是一部热门戏剧吗
存在无限的观察者吗
第 10 章 当人猿泰山遇到简,深陷概率论的沼泽
忘记时间和位置,硬币正面朝上的概率有多大
森林里的贝叶斯
第 11 章 我们会死在射杀房里吗?同一事件的两种不同概率
现在是后一轮射杀吗
莫比乌斯环,同一事件的两种不同概率
第 12 章 形而上的泡泡糖贩卖机,我们的命运由连续的随机事件决定
有顺序的泡泡糖贩卖机,还是随机抽取的瓮
加倍下注法与必输的赌局

第二部分 用概率思维理解生命、思想和宇宙
第 13 章 理解模拟世界假说,在没有数据的情况下,应该自己出去寻找数据
假设宇宙是在5分钟前创建的,你要怎么知道它不是呢
波斯特洛姆的三重困境
模拟世界可能实现吗
有意识的虚拟人还是无意识的僵尸
真实的我还是仿真的我
寻找真相,检验模拟世界假说
或许我们会爱上这个“黑客帝国”
第 14 章 理解费米问题,缺乏证据并不意味着没有证据
德雷克公式,到底存在多少种智慧物种
冯·诺伊曼的探测器,可以自我复制的机器人
第 15 章 理解智慧生命,观察者的选择效应
三种智慧生命存在的假说
进化中的关键一步
混沌中的生物进化

第 16 章 理解人类的生存,为什么我们从未遇见外星人
孤独地生活在银河系的人类
旅鼠与黑天鹅
第 17 章 理解潘多拉的魔盒,大家也许都有“好故事偏见”
物种历史上的后一个错误
真空亚稳态,终的生态灾难
消除其他物种的致命探测器
世界末日的时间表
第 18 章 理解多重世界,我们不该太在意零概率与极小概率之间的区别
薛定谔的猫,坍缩的波函数
没有人或猫,是一座量子孤岛
泰格马克的量子自杀机
在某些量子世界中永生
死亡不是一件非黑即白的事情
多重世界没有独一无二的历史
第 19 章 理解神奇数字1/137,一次偶然事件的结果不能推出过往的历史
宇宙微调
1/137,上帝之手书写的神奇数字
多重世界是一条摆满镜子的走廊,每个人都在无休止地重复
多重宇宙是真实的吗
反赌徒谬论,这是第几次掷骰子
爱因斯坦的概率问题
第 20 章 理解人工智能,评估不确定的风险
末日回形针,被打开的潘多拉魔盒
人工智能应该有一个能“关闭”的按钮
机器统治世界的方式
人工智能,天堂还是地狱

结 语 对抗可能性的首要规则是永远不要否认可能性
致  谢
注 释
內容試閱
预测是一朵带刺的玫瑰

从几千年前的巫祝A开始,人类就开始预测未来。只不过那个时候的预测,往往是基于极其朴素的世界运行原理:例如以“水为万物生长和运动之源”为核心的泰勒斯假说和以“对立、协同、转换”为核心的阴阳学说;又或者一些重大事件之间的偶发联系,例如某一次日食后出现了持续数月的大旱。至于本书的重头戏——关于末日的预测,在宗教与科学“相爱相杀”的人类历史演进中,从来就没有缺席过。然而,以现代科学的标准看,除了少量极其罕见的严肃讨论外(本书将介绍几乎所有有价值的讨论),这类“预测”不过是人类的卑微理性在无常的自然和缥缈的未来面前无畏的挣扎罢了。
基于预测所使用的理论和方法的坚实程度以及相应的对于预测结果正确性的信念,我们可以大致把预测分为三类。一个是基于严格理论的预测结果,例如基于量子力学理论,预测某粒子在某时间段内出现在某区域内的概率。这种预测可以用来检验相应的物理理论是否正确。另一个是对未来的定性预言,这些预言往往来自未来学家和科幻作家,例如法国小说家儒勒·凡尔纳(Jules Verne)在《从地球到月球》中对人类登月和在《海底两万里》中对海底潜艇的预言,世界著名未来学家阿尔文·托夫勒(Alvin Tofer)在《第三次浪潮》中对互联网科技时代的预言,以及法国预言家诺查丹玛斯(Nostradamus)在《诸世纪》中对世界末日的预言,等等。这类预言更像是猜测而非预测,往往只能给出定性的判断,而不能给出定量的精确度。有时,预言模糊到可以有不同的解释方法,以至于连定性的判断都做不到,例如我们对李淳风和袁天罡所著的《推背图》的解读。而我所感兴趣的预测,是介于两种之间的第三类:既没有一套坚实的理论作为支撑,也不是漫无边际的未来学说,而是基于手头已经掌握的一些数据,利用概率统计、数据挖掘或者机器学习的方法,对未知的数据或者未来的发展进行的可量化的预测。
对于自然科学和努力向自然科学靠近的社会科学来说,“解释—预测—干预”(或称“解释—预测—控制”)是我们回答科学问题的三部曲,其任务分别是:(1)提出理论模型,解释已经观察到的现象;(2)预测未被观察到的数据或现象(可能是缺失的数据,也可能是未来才会发生的事件);(3)通过对真实系统进行具体的干预以达到提前预设的目标。针对一个现象“看起来正确”的解释,并不能说明相应的理论或机制就是正确的,而仅仅是指出了一种正确的可能性。事实上,这种解释的可信度往往都是比较低的。
很多社会科学研究都是典型的“事后诸葛亮”,当一个事件发生之后,总能提出一些经过修修补补的理论模型,对已经发生的事件给出定性正确甚至定量精确的解释。自然科学亦是如此,通过添加越来越多的本轮和均轮,打了补丁的托勒密的地心说“苟延残喘”了1500 多年。经济学界有一句谚语,大意是“能预测经济危机的理论一个也没有,能解释经济危机的理论却俯拾皆是”,从这个意义上来讲,预测一般要难于解释,正确预测对于理论正确性的背书力度也要强于解释。当然,这里的更难主要是指预测尚未发生的事,而不是缺失的数据,预测后者通常要更容易一些。正确的预测也可能翻车,比如地心说也可以成功预测很多天象,只是随着测量精度的提升以及对预测精度要求的相应提高,错误的理论终究会破绽百出。与解释和预测相比,成功的干预可以极大地增强我们对理论正确性和适用性的信心,因为在不知道或者弄错了因果关系的前提下,恰好出现我们期望的干预结果的可能性是很小的。
尽管对于理论正确性的背书力度是干预超过预测、预测超过解释,但我认为预测在科学研究,特别是社会科学研究中处于重要的位置,因为社会科学的研究对象具有极大的不完备性和不确定性。影响社会发展的因素数不胜数,任何理论都不可能将它们全盘纳入,而单个因素也是不独立且不稳定的,会受外部环境和其他因素的影响。因此,在一个封闭的环境中,通过设计可控的重复实验,观察干预的结果,从而对社会理论进行定量验证,是不太可能实现或者成本极高,而这恰恰是物理科学和其他自然科学得以螺旋式前进的基本方法。在这个前提下,预测尚未观察或尚未发生的数据或事件,就成了检验理论正确性有效的手段。
另外,从更广泛的意义上讲,干预中必然包含预测,因为我们需要提前预测干预的结果,并且和真实的实验结果做对比。由于干预工作的绝大部分工作量往往都集中在实验设计和实施,所以我们往往忘记干预之前总是需要做预测的。一种可能的做法是,在干预实验之前没有理论和预测,而需要根据干预实验的结果“重新发现”合适的理论,这种因果倒置的研究方法是极度危险的,因为理论模型会根据干预实验的结果进行各种调整,从而变成一个过拟合的理论。以上林林总总,导致了社会科学领域的理论模型和实验结果高度不可信。只有当一套理论解释还能够持续地、高精度地对尚未发生的事件进行预测时,我们才能真正信服。
得益于可获取数据量的暴涨和计算能力的飞升,预测在现代社会学、经济学、管理学乃至政治学中似乎已经开始并即将扮演统治性的重要地位!这些预测涉及我们可以想到和难以想到的方方面面:从一个人的民族、信仰、政治态度、性别取向,到一个人是否罹患抑郁症;从社交网络未来的演化,到生物网络中未知的链接;从恐怖袭击可能发生的时间和空间到各个国家和地区政治大选的终结果……在本书中,各位读者还可以看到更多更奇妙的“可供预测的对象”,而在阅读这本书之前,大家恐怕都不会想到这些对象也可以用科学的方式进行预测。
然而,预测绝不仅仅是一朵盛开的玫瑰,而是一朵带刺的玫瑰。即便排除因为实验人员有意识或者无意识驱动预测结果向有利于理论的方向滑动而带来的问题、错误地使用数据和方法,以及错误地理解和应用预测的结果,都有可能带来灾难性的后果。下面我选择三个较为重要的批判性论题,供各位读者讨论。
,预测中存在自证陷阱和自否偏差。预测都是在某种前提或环境下做出来的,而预测本身有可能改变这种环境。所以,我们看到的正确或者错误,有可能都是预测本身带来的,而和预测结果没有关系。首先,很多预测具有自证的特性。例如,基金委员会召集资深专家或者利用机器学习的方法,试图预测未来学者能够在哪些研究方向中做出颠覆性或系统性的贡献。这就是一个典型的自证场景。因为无论是专家意见、机器学习还是随机乱说,只要基金委员会处在正常的逻辑下,必然会大幅提高对这些“重要方向”的支持力度,那么学者更可能在这些方向做出更多贡献,而这又反过来证明了预测的正确性。其次,很多预测具有自否的特性。比如,我们通过对治安事件时空模式的分析,预测出了接下来一段时间容易出现街头犯罪的场所,于是公安部门在相应的时间和地点增加了巡逻的警力,结果街头犯罪量大幅降低。请问,这个预测本身是正确的还是错误的呢?又比如我们自动监测慢性肾病患者的用药和饮食习惯,发现有一个患者经常不按时按量服药并且不忌口,根据大量病历样本,我们预测他2年之后会转为尿毒症。患者震惊于这个警告,然后改变了自己的习惯,尽可能配合医嘱,结果5年过去了,病情也没有进一步发展。请问,这个预测本身是正确的还是错误的呢?
第二,数据偏差会降低预测结果的适用度。如果用于预测的数据不能很好地表示该理论或模型所应用或针对的目标群体,就会出现数据的表示偏差,这是常见的数据偏差之一。例如,想通过分析微博的语言来看整个中国民众的情绪状况和幸福水平,就可能会出现表示偏差,因为微博用户全体或随机抽样会对年轻人“表示过度”而对老年人“表示不足”。因此,从微博数据中得到的中国民众幸福水平,以及通过进一步文本分析获取的中国民众诉求,可能无法准确反映老年人的情况。也就是说,用被某来源数据训练出来的模型,有可能对于该来源中表示不足的群体并不适用或者效果较差。如果把模型和结论用到其他来源的数据集中,则需要更加小心,因为一般而言都会存在表示偏差。例如 ImageNetA 中来自中国和印度的照片只占1% 和2%,因此直接用ImageNet 训练出来的分类器在分类物品和人的时候,如果这个图片来自中国或印度,其精确度就显著低于平均水平。
第三,预测可能会加剧偏见和歧视。即便数据本身是真实的,如果数据中存在大量的负面内容,基于这些数据的预测结果就可能学会甚至放大与这些负面内容相关的偏见。例如,基于谷歌新闻、维基百科等超大规模历史语料库数据的预训练模型(该模型的结果已经被广泛应用于自然语言处理的各种分析和预测工作中)所得到的单词的向量表示中,已经沉淀了严重的性别和伦理方面的刻板印象,比如词语“护士”和女性高度相关,词语“工程师”和男性高度相关,词语“同性恋”与疾病、耻辱高度相关。我们现在努力消除的一些偏见可能在历史语料库中很常见,如果不加分辨地应用,聪明的预测算法可能很快就学会了这些偏见。
哪怕直接应用真实的数据,也可能导致加剧歧视的结果。在职场中性别歧视非常严重,例如某互联网求职简历数据显示,在同等学历条件和行业背景下,女性要多工作5~10 年才能获得和男性相当的薪水。使用这类数据进行职位推荐(本质上是预测你适合什么样的职位,然后把这个职位推荐给你),结果必然自带歧视。例如,谷歌广告系统的人工智能算法在推送职位招聘信息的时候,同等教育背景和工作经历下的男性要比女性以高得多的频率收到高收入职位的招聘信息。如果我们有一组人力资源数据,数据中显示,每十个前1% 高年薪的高端职位中只有一位女性,于是“性别为女性”这个特征值在获得高端职位匹配预测中将是一个负面的因素,算法的结果自然也将避免给女性推送高端职位信息。在没有基于大数据预测和推荐服务的情况下,男性和女性获得高端职位信息的数量可能相差不大,这种情况下女性真正获聘高端职位的可能性也远低于男性。如今,计算机的自动服务在源头上就让女性获得信息的机会更少,所以可以预测,女性获得高端职位的比例将进一步降低,而这又再次降低新数据中女性获得高端职位的比例,从而让算法更少向女性推荐高端职位。这种恶性循环,会进一步加剧原本就存在的性别歧视和不公。
我们正在进入一个“一切皆可预测”的时代,但诸位手头的这本《概率思维预测未来》,本质上不是讲预测的,而是讲概率论的,因此,我的序言起到的是抛砖引玉的作用。我只是借着写序的地方,表达一些关于预测有好有坏的看法。

预测是一朵带刺的玫瑰

从几千年前的巫祝A开始,人类就开始预测未来。只不过那个时候的预测,往往是基于极其朴素的世界运行原理:例如以“水为万物生长和运动之源”为核心的泰勒斯假说和以“对立、协同、转换”为核心的阴阳学说;又或者一些重大事件之间的偶发联系,例如某一次日食后出现了持续数月的大旱。至于本书的重头戏——关于末日的预测,在宗教与科学“相爱相杀”的人类历史演进中,从来就没有缺席过。然而,以现代科学的标准看,除了少量极其罕见的严肃讨论外(本书将介绍几乎所有有价值的讨论),这类“预测”不过是人类的卑微理性在无常的自然和缥缈的未来面前无畏的挣扎罢了。
基于预测所使用的理论和方法的坚实程度以及相应的对于预测结果正确性的信念,我们可以大致把预测分为三类。一个是基于严格理论的预测结果,例如基于量子力学理论,预测某粒子在某时间段内出现在某区域内的概率。这种预测可以用来检验相应的物理理论是否正确。另一个是对未来的定性预言,这些预言往往来自未来学家和科幻作家,例如法国小说家儒勒·凡尔纳(Jules Verne)在《从地球到月球》中对人类登月和在《海底两万里》中对海底潜艇的预言,世界著名未来学家阿尔文·托夫勒(Alvin Tofer)在《第三次浪潮》中对互联网科技时代的预言,以及法国预言家诺查丹玛斯(Nostradamus)在《诸世纪》中对世界末日的预言,等等。这类预言更像是猜测而非预测,往往只能给出定性的判断,而不能给出定量的精确度。有时,预言模糊到可以有不同的解释方法,以至于连定性的判断都做不到,例如我们对李淳风和袁天罡所著的《推背图》的解读。而我所感兴趣的预测,是介于两种之间的第三类:既没有一套坚实的理论作为支撑,也不是漫无边际的未来学说,而是基于手头已经掌握的一些数据,利用概率统计、数据挖掘或者机器学习的方法,对未知的数据或者未来的发展进行的可量化的预测。
对于自然科学和努力向自然科学靠近的社会科学来说,“解释—预测—干预”(或称“解释—预测—控制”)是我们回答科学问题的三部曲,其任务分别是:(1)提出理论模型,解释已经观察到的现象;(2)预测未被观察到的数据或现象(可能是缺失的数据,也可能是未来才会发生的事件);(3)通过对真实系统进行具体的干预以达到提前预设的目标。针对一个现象“看起来正确”的解释,并不能说明相应的理论或机制就是正确的,而仅仅是指出了一种正确的可能性。事实上,这种解释的可信度往往都是比较低的。
很多社会科学研究都是典型的“事后诸葛亮”,当一个事件发生之后,总能提出一些经过修修补补的理论模型,对已经发生的事件给出定性正确甚至定量精确的解释。自然科学亦是如此,通过添加越来越多的本轮和均轮,打了补丁的托勒密的地心说“苟延残喘”了1500 多年。经济学界有一句谚语,大意是“能预测经济危机的理论一个也没有,能解释经济危机的理论却俯拾皆是”,从这个意义上来讲,预测一般要难于解释,正确预测对于理论正确性的背书力度也要强于解释。当然,这里的更难主要是指预测尚未发生的事,而不是缺失的数据,预测后者通常要更容易一些。正确的预测也可能翻车,比如地心说也可以成功预测很多天象,只是随着测量精度的提升以及对预测精度要求的相应提高,错误的理论终究会破绽百出。与解释和预测相比,成功的干预可以极大地增强我们对理论正确性和适用性的信心,因为在不知道或者弄错了因果关系的前提下,恰好出现我们期望的干预结果的可能性是很小的。
尽管对于理论正确性的背书力度是干预超过预测、预测超过解释,但我认为预测在科学研究,特别是社会科学研究中处于重要的位置,因为社会科学的研究对象具有极大的不完备性和不确定性。影响社会发展的因素数不胜数,任何理论都不可能将它们全盘纳入,而单个因素也是不独立且不稳定的,会受外部环境和其他因素的影响。因此,在一个封闭的环境中,通过设计可控的重复实验,观察干预的结果,从而对社会理论进行定量验证,是不太可能实现或者成本极高,而这恰恰是物理科学和其他自然科学得以螺旋式前进的基本方法。在这个前提下,预测尚未观察或尚未发生的数据或事件,就成了检验理论正确性有效的手段。
另外,从更广泛的意义上讲,干预中必然包含预测,因为我们需要提前预测干预的结果,并且和真实的实验结果做对比。由于干预工作的绝大部分工作量往往都集中在实验设计和实施,所以我们往往忘记干预之前总是需要做预测的。一种可能的做法是,在干预实验之前没有理论和预测,而需要根据干预实验的结果“重新发现”合适的理论,这种因果倒置的研究方法是极度危险的,因为理论模型会根据干预实验的结果进行各种调整,从而变成一个过拟合的理论。以上林林总总,导致了社会科学领域的理论模型和实验结果高度不可信。只有当一套理论解释还能够持续地、高精度地对尚未发生的事件进行预测时,我们才能真正信服。
得益于可获取数据量的暴涨和计算能力的飞升,预测在现代社会学、经济学、管理学乃至政治学中似乎已经开始并即将扮演统治性的重要地位!这些预测涉及我们可以想到和难以想到的方方面面:从一个人的民族、信仰、政治态度、性别取向,到一个人是否罹患抑郁症;从社交网络未来的演化,到生物网络中未知的链接;从恐怖袭击可能发生的时间和空间到各个国家和地区政治大选的终结果……在本书中,各位读者还可以看到更多更奇妙的“可供预测的对象”,而在阅读这本书之前,大家恐怕都不会想到这些对象也可以用科学的方式进行预测。
然而,预测绝不仅仅是一朵盛开的玫瑰,而是一朵带刺的玫瑰。即便排除因为实验人员有意识或者无意识驱动预测结果向有利于理论的方向滑动而带来的问题、错误地使用数据和方法,以及错误地理解和应用预测的结果,都有可能带来灾难性的后果。下面我选择三个较为重要的批判性论题,供各位读者讨论。
,预测中存在自证陷阱和自否偏差。预测都是在某种前提或环境下做出来的,而预测本身有可能改变这种环境。所以,我们看到的正确或者错误,有可能都是预测本身带来的,而和预测结果没有关系。首先,很多预测具有自证的特性。例如,基金委员会召集资深专家或者利用机器学习的方法,试图预测未来学者能够在哪些研究方向中做出颠覆性或系统性的贡献。这就是一个典型的自证场景。因为无论是专家意见、机器学习还是随机乱说,只要基金委员会处在正常的逻辑下,必然会大幅提高对这些“重要方向”的支持力度,那么学者更可能在这些方向做出更多贡献,而这又反过来证明了预测的正确性。其次,很多预测具有自否的特性。比如,我们通过对治安事件时空模式的分析,预测出了接下来一段时间容易出现街头犯罪的场所,于是公安部门在相应的时间和地点增加了巡逻的警力,结果街头犯罪量大幅降低。请问,这个预测本身是正确的还是错误的呢?又比如我们自动监测慢性肾病患者的用药和饮食习惯,发现有一个患者经常不按时按量服药并且不忌口,根据大量病历样本,我们预测他2年之后会转为尿毒症。患者震惊于这个警告,然后改变了自己的习惯,尽可能配合医嘱,结果5年过去了,病情也没有进一步发展。请问,这个预测本身是正确的还是错误的呢?
第二,数据偏差会降低预测结果的适用度。如果用于预测的数据不能很好地表示该理论或模型所应用或针对的目标群体,就会出现数据的表示偏差,这是常见的数据偏差之一。例如,想通过分析微博的语言来看整个中国民众的情绪状况和幸福水平,就可能会出现表示偏差,因为微博用户全体或随机抽样会对年轻人“表示过度”而对老年人“表示不足”。因此,从微博数据中得到的中国民众幸福水平,以及通过进一步文本分析获取的中国民众诉求,可能无法准确反映老年人的情况。也就是说,用被某来源数据训练出来的模型,有可能对于该来源中表示不足的群体并不适用或者效果较差。如果把模型和结论用到其他来源的数据集中,则需要更加小心,因为一般而言都会存在表示偏差。例如 ImageNetA 中来自中国和印度的照片只占1% 和2%,因此直接用ImageNet 训练出来的分类器在分类物品和人的时候,如果这个图片来自中国或印度,其精确度就显著低于平均水平。
第三,预测可能会加剧偏见和歧视。即便数据本身是真实的,如果数据中存在大量的负面内容,基于这些数据的预测结果就可能学会甚至放大与这些负面内容相关的偏见。例如,基于谷歌新闻、维基百科等超大规模历史语料库数据的预训练模型(该模型的结果已经被广泛应用于自然语言处理的各种分析和预测工作中)所得到的单词的向量表示中,已经沉淀了严重的性别和伦理方面的刻板印象,比如词语“护士”和女性高度相关,词语“工程师”和男性高度相关,词语“同性恋”与疾病、耻辱高度相关。我们现在努力消除的一些偏见可能在历史语料库中很常见,如果不加分辨地应用,聪明的预测算法可能很快就学会了这些偏见。
哪怕直接应用真实的数据,也可能导致加剧歧视的结果。在职场中性别歧视非常严重,例如某互联网求职简历数据显示,在同等学历条件和行业背景下,女性要多工作5~10 年才能获得和男性相当的薪水。使用这类数据进行职位推荐(本质上是预测你适合什么样的职位,然后把这个职位推荐给你),结果必然自带歧视。例如,谷歌广告系统的人工智能算法在推送职位招聘信息的时候,同等教育背景和工作经历下的男性要比女性以高得多的频率收到高收入职位的招聘信息。如果我们有一组人力资源数据,数据中显示,每十个前1% 高年薪的高端职位中只有一位女性,于是“性别为女性”这个特征值在获得高端职位匹配预测中将是一个负面的因素,算法的结果自然也将避免给女性推送高端职位信息。在没有基于大数据预测和推荐服务的情况下,男性和女性获得高端职位信息的数量可能相差不大,这种情况下女性真正获聘高端职位的可能性也远低于男性。如今,计算机的自动服务在源头上就让女性获得信息的机会更少,所以可以预测,女性获得高端职位的比例将进一步降低,而这又再次降低新数据中女性获得高端职位的比例,从而让算法更少向女性推荐高端职位。这种恶性循环,会进一步加剧原本就存在的性别歧视和不公。
我们正在进入一个“一切皆可预测”的时代,但诸位手头的这本《概率思维预测未来》,本质上不是讲预测的,而是讲概率论的,因此,我的序言起到的是抛砖引玉的作用。我只是借着写序的地方,表达一些关于预测有好有坏的看法。

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.