登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』新型无卤阻燃聚乳酸材料

書城自編碼: 3719264
分類: 簡體書→大陸圖書→工業技術化學工業
作者: 陈雅君 著
國際書號(ISBN): 9787122397447
出版社: 化学工业出版社
出版日期: 2021-08-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:NT$ 742

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
山西寺观艺术壁画精编卷
《 山西寺观艺术壁画精编卷 》

售價:NT$ 7650.0
中国摄影 中式摄影的独特魅力
《 中国摄影 中式摄影的独特魅力 》

售價:NT$ 4998.0
山西寺观艺术彩塑精编卷
《 山西寺观艺术彩塑精编卷 》

售價:NT$ 7650.0
积极心理学
《 积极心理学 》

售價:NT$ 254.0
自由,不是放纵
《 自由,不是放纵 》

售價:NT$ 250.0
甲骨文丛书·消逝的光明:欧洲国际史,1919—1933年(套装全2册)
《 甲骨文丛书·消逝的光明:欧洲国际史,1919—1933年(套装全2册) 》

售價:NT$ 1265.0
剑桥日本戏剧史(剑桥世界戏剧史译丛)
《 剑桥日本戏剧史(剑桥世界戏剧史译丛) 》

售價:NT$ 918.0
中国高等艺术院校精品教材大系:材料的时尚表达??服装创意设计
《 中国高等艺术院校精品教材大系:材料的时尚表达??服装创意设计 》

售價:NT$ 347.0

建議一齊購買:

+

NT$ 551
《 制药分离工程 》
+

NT$ 562
《 树脂基复合材料成型工艺读本 》
+

NT$ 1547
《 现代催化研究方法新编(上下册) 》
+

NT$ 428
《 化妆品配方与制备 》
+

NT$ 568
《 有机合成安全学 》
+

NT$ 706
《 现代药物合成 》
編輯推薦:
本书系统总结了作者在阻燃聚乳酸领域长期从事的研究工作和理论成果,详细介绍了阻燃聚乳酸材料的发展和目前的研究热点、磷系阻燃剂及其协效阻燃体系在聚乳酸中的阻燃行为、有机纳米蒙脱土阻燃聚乳酸体系、磷腈/三嗪双基分子阻燃聚乳酸体系、高性能交联阻燃聚乳酸体系和生物基阻燃剂阻燃聚乳酸体系。介绍了上述几种典型的无卤阻燃聚乳酸材料的阻燃性能、力学性能和热稳定性,总结了高性能阻燃聚乳酸材料的阻燃机理,对今后发展高性能阻燃聚乳酸材料具有重要的理论和实践参考价值。
內容簡介:
本书系统总结了作者在阻燃聚乳酸领域长期从事的研究工作和理论成果,详细介绍了阻燃聚乳酸材料的发展和目前的研究热点、磷系阻燃剂阻燃聚乳酸体系、纳米有机改性蒙脱土阻燃聚乳酸体系、磷腈/三嗪双基分子阻燃聚乳酸体系、高性能交联阻燃聚乳酸体系和生物基阻燃剂阻燃聚乳酸体系。介绍了上述几种典型的无卤阻燃聚乳酸材料的阻燃性能、力学性能和热稳定性,总结了高性能阻燃聚乳酸材料的阻燃机理,对今后发展高性能阻燃聚乳酸材料具有重要的理论和实践参考价值。
本书适用于阻燃聚乳酸材料领域的生产技术人员、科研人员、管理人员及相关专业的大中院校师生等。
關於作者:
硕士生导师,2017年入选北京市青年拔尖人才,现任北京工商大学化学与材料工程学院材料科学与工程系副主任,阻燃材料产业技术创新战略联盟副秘书长、高分子材料无卤阻燃剂工程实验室副主任。
研究领域为环境友好阻燃高分子材料,先后承担阻燃材料领域国家自然科学基金、国家重点研发计划课题、北京市青年拔尖人才项目、企业委托产学研合作等研究课题15项。已经在Composites Part B、PDST等刊物发表论文40余篇,授权国家发明专利18项,获得了国家自然科学基金和北京市青年拔尖人才项目资助,现均已完成,2020年作为主要完成人获得中国轻工业联合会科学技术发明奖一等奖。设计、制备并研究阐明了磷腈/三嗪双基分子阻燃聚乳酸和含磷有机硅改性聚磷酸铵及其阻燃聚氨酯泡沫的性能变化规律和阻燃作用机理;成功开发了阻燃聚丙烯薄膜和高性能阻燃ABS树脂并实现产业化。
目錄
第1章绪论1
1.1聚乳酸的简介1
1.1.1聚乳酸的基本性质2
1.1.2聚乳酸的燃烧和热分解机理2
1.1.3聚乳酸的应用3
1.2聚乳酸材料的阻燃改性4
1.2.1磷系阻燃剂4
1.2.2磷-氮系阻燃剂7
1.2.3硅系阻燃剂8
1.2.4膨胀型阻燃剂9
1.2.5无机及纳米粉体阻燃剂11
1.2.6协效阻燃体系12
1.3聚乳酸阻燃的研究热点13
1.3.1高性能阻燃聚乳酸13
1.3.2生物基阻燃剂阻燃聚乳酸30
1.3.3纳米阻燃剂阻燃聚乳酸44
参考文献55
第2章磷系阻燃剂阻燃聚乳酸体系70
2.1磷-氮膨胀型阻燃剂与纳米有机改性蒙脱土协同阻燃聚乳酸体系70
2.1.1IFR/OMMT阻燃聚乳酸复合材料的制备71
2.1.2IFR/OMMT阻燃聚乳酸复合材料的阻燃性能71
2.1.3IFR/OMMT阻燃聚乳酸复合材料的热稳定性76
2.1.4小结77
2.2聚磷酸铵与超支化三嗪成炭剂协同阻燃聚乳酸体系77
2.2.1超支化三嗪成炭剂78
2.2.2APP/EA协同阻燃聚乳酸81
2.2.3APP/EA/金属化合物协同阻燃聚乳酸88
2.2.4APP/EA/蒙脱土协同阻燃聚乳酸94
2.2.5小结100
2.3聚磷酸铵与含硅三嗪成炭剂协同阻燃聚乳酸体系101
2.3.1含硅三嗪成炭剂102
2.3.2阻燃聚乳酸复合材料的制备104
2.3.3APP/MEA阻燃聚乳酸复合材料的阻燃性能104
2.3.4APP/MEA阻燃聚乳酸复合材料的热稳定性108
2.3.5小结109
2.4二乙基次膦酸铝与纳米有机改性蒙脱土协同阻燃聚乳酸体系109
2.4.1ADP/OMMT阻燃聚乳酸复合材料的制备110
2.4.2ADP/OMMT阻燃聚乳酸复合材料的阻燃性能110
2.4.3ADP/OMMT阻燃聚乳酸复合材料的热稳定性115
2.4.4小结116
2.5本章小结116
参考文献118
第3章纳米有机改性蒙脱土阻燃聚乳酸体系124
3.1不同种类纳米有机改性蒙脱土在聚乳酸中的阻燃行为124
3.1.1阻燃聚乳酸纳米复合材料的制备124
3.1.2极限氧指数和垂直燃烧测试分析124
3.1.3锥形量热测试分析125
3.1.4残炭分析127
3.1.5力学性能127
3.1.6小结128
3.2不同含量的I.34TCN阻燃聚乳酸体系128
3.2.1PLA/I.34TCN纳米复合材料的制备129
3.2.2PLA/I.34TCN纳米复合材料的阻燃性能129
3.2.3PLA/I.34TCN纳米复合材料的力学性能129
3.2.4小结130
3.3硅烷化纳米有机改性蒙脱土阻燃聚乳酸体系130
3.3.1硅烷化纳米有机改性蒙脱土的制备130
3.3.2硅烷化纳米有机改性蒙脱土的结构与性能131
3.3.3硅烷化纳米有机改性蒙脱土阻燃聚乳酸的阻燃性能133
3.3.4小结138
3.4硅烷化纳米有机改性蒙脱土与膨胀型阻燃剂复配阻燃聚乳酸体系138
3.4.1复配阻燃聚乳酸复合材料的制备138
3.4.2极限氧指数和垂直燃烧测试分析139
3.4.3锥形量热测试分析141
3.4.4残炭分析143
3.4.5小结144
第4章磷腈/三嗪双基分子阻燃聚乳酸体系145
4.1端氨基磷腈/三嗪双基分子阻燃聚乳酸体系145
4.1.1端氨基磷腈/三嗪双基分子146
4.1.2HTTCP阻燃聚乳酸的制备148
4.1.3HTTCP阻燃聚乳酸的阻燃性能149
4.1.4HTTCP阻燃聚乳酸的热稳定性153
4.1.5HTTCP阻燃聚乳酸的力学性能154
4.1.6小结155
4.2三种不同端基的磷腈/三嗪双基分子在聚乳酸中的阻燃行为对比156
4.2.1三种磷腈/三嗪双基分子的制备156
4.2.2三种磷腈/三嗪双基分子的结构和性能对比158
4.2.3三种磷腈/三嗪双基分子阻燃聚乳酸的制备160
4.2.4三种磷腈/三嗪双基分子阻燃聚乳酸的热稳定性160
4.2.5三种磷腈/三嗪双基分子在聚乳酸中的阻燃行为对比161
4.2.6三种磷腈/三嗪双基分子在聚乳酸中的阻燃机理分析169
4.2.7小结169
4.3端氨基磷腈/三嗪双基分子与六苯氧基环三磷腈复配阻燃聚乳酸体系169
4.3.1HTTCP/HPCTP复配阻燃聚乳酸的制备170
4.3.2HTTCP/HPCTP阻燃聚乳酸的阻燃性能170
4.3.3HTTCP/HPCTP阻燃聚乳酸的热稳定性175
4.3.4HTTCP/HPCTP阻燃聚乳酸的力学性能176
4.3.5小结176
4.4磷腈/三嗪双基分子原位掺杂纳米氧化锌阻燃聚乳酸体系177
4.4.1磷腈/三嗪双基分子原位掺杂纳米氧化锌177
4.4.2A4-d-ZnO阻燃聚乳酸的制备181
4.4.3A4-d-ZnO阻燃聚乳酸的热性能182
4.4.4A4-d-ZnO阻燃聚乳酸的阻燃性能184
4.4.5A4-d-ZnO阻燃聚乳酸的阻燃机理186
4.4.6A4-d-ZnO阻燃聚乳酸的力学性能186
4.4.7小结188
4.5磷腈/三嗪双基分子原位掺杂纳米氧化锌与HTTCP/APP协同阻燃聚乳酸体系188
4.5.1A4-d-ZnO/HTTCP/APP复配阻燃聚乳酸的制备188
4.5.2A4-d-ZnO/HTTCP/APP复配阻燃聚乳酸的阻燃性能189
4.5.3A4-d-ZnO/HTTCP/APP复配阻燃聚乳酸的热性能193
4.5.4A4-d-ZnO/APP/HTTCP复配阻燃聚乳酸的力学性能196
4.5.5小结196
4.6HTTCP/APP协同阻燃聚乳酸体系的高性能化197
4.6.1HTTCP/APP高性能阻燃聚乳酸的制备197
4.6.2HTTCP/APP高性能阻燃聚乳酸的阻燃性能198
4.6.3HTTCP/APP高性能阻燃聚乳酸的热性能203
4.6.4HTTCP/APP高性能阻燃聚乳酸的力学性能205
4.6.5HTTCP/APP高性能阻燃聚乳酸的流变性能206
4.6.6小结208
4.7本章小结208
参考文献210
第5章高性能交联阻燃聚乳酸体系214
5.1基于纳米氧化锌和扩链剂ADR的交联阻燃聚乳酸体系214
5.1.1ZnO/ADR交联阻燃复合材料的制备215
5.1.2交联结构分析215
5.1.3ZnO/ADR交联阻燃聚乳酸的力学性能218
5.1.4ZnO/ADR交联阻燃聚乳酸的阻燃性能219
5.1.5ZnO/ADR交联阻燃聚乳酸的热性能223
5.1.6ZnO/ADR交联阻燃聚乳酸的阻燃机理225
5.1.7小结225
5.2基于引发剂DCP的交联阻燃聚乳酸体系227
5.2.1DCP交联阻燃复合材料的制备227
5.2.2交联结构分析228
5.2.3DCP交联阻燃聚乳酸的力学性能229
5.2.4DCP交联阻燃聚乳酸的阻燃性能231
5.2.5DCP交联阻燃聚乳酸的热性能234
5.2.6DCP交联阻燃聚乳酸的阻燃机理236
5.2.7小结236
5.3引发剂DCP和交联剂TAIC交联阻燃聚乳酸体系的筛选及其性能优化237
5.3.1PLA/DCP/TAIC交联阻燃复合材料的制备237
5.3.2交联结构分析238
5.3.3PLA/DCP/TAIC交联阻燃体系的力学性能240
5.3.4PLA/DCP/TAIC交联阻燃体系的阻燃性能241
5.3.5PLA/DCP/TAIC交联阻燃体系的热性能246
5.3.6小结247
5.4优化比例的DCP/TAIC交联阻燃聚乳酸体系性能研究和机理分析247
5.4.10.9DCP/0.3TAIC交联阻燃复合材料的制备248
5.4.2交联结构分析248
5.4.30.9DCP/0.3TAIC交联阻燃体系的力学性能251
5.4.40.9DCP/0.3TAIC交联阻燃体系的阻燃性能252
5.4.5小结256
5.5结论257
第6章生物基阻燃剂阻燃聚乳酸体系259
6.1纤维素纳米晶的阻燃改性259
6.1.1含磷腈基团的纤维素纳米晶(P/N-CNC)259
6.1.2含三嗪基团的纤维素纳米晶(C/N-CNC)265
6.1.3小结269
6.2P/N-CNC阻燃聚乳酸体系269
6.2.1P/N-CNC阻燃聚乳酸复合材料的制备269
6.2.2P/N-CNC阻燃聚乳酸复合材料的阻燃性能270
6.2.3P/N-CNC阻燃聚乳酸复合材料的热性能274
6.2.4P/N-CNC阻燃聚乳酸复合材料的力学性能277
6.2.5小结278
6.3P/N-CNC与含磷阻燃剂复配阻燃聚乳酸体系279
6.3.1聚乳酸复合材料的制备279
6.3.2聚乳酸复合材料的阻燃性能279
6.3.3聚乳酸复合材料的热性能283
6.3.4聚乳酸复合材料的力学性能286
6.3.5小结287
参考文献287
內容試閱
科学技术的进步以及目前人类生产生活对高分子材料的依赖,使化石资源过度使用从而造成的白色污染问题越发严重。研究表明,20世纪50年代以来,人类已经生产了91亿吨塑料制品,其中约70亿吨已成为塑料垃圾。在这70亿吨塑料垃圾中,9%被回收利用,12%被焚烧,而余下大约55亿吨则被填埋或者随意丢弃在自然环境中,造成了严重的持续性污染。随着外卖、快递等新业态的快速发展,目前塑料垃圾的产生速度更是远超过去。因此,保护环境,以生物可降解塑料代替产生白色污染的不可降解塑料已成为必然的趋势。聚乳酸具有机械强度高、可生物降解等优势,已被公认为替代不可降解塑料前景的环境友好材料之一。
聚乳酸目前已经广泛应用于食品包装、纤维纺织、医疗等领域。在全球禁塑令的影响下,聚乳酸的下游需求不断增长,且其应用范围逐渐从一次性可生物降解材料扩展至航天航空、电子电器、汽车等领域。但是聚乳酸属于易燃材料,极限氧指数仅为20.2%,只能达到垂直燃烧的UL 94 HB级别,且燃烧时滴落严重,无法满足电子电器、汽车等领域对材料阻燃性能的严苛要求。因此,对聚乳酸树脂进行阻燃改性具有十分重要的价值和意义,而无卤阻燃聚乳酸材料也成为近年来研究的热点。目前公开报道的关于聚乳酸阻燃改性的研究中,磷-氮膨胀型阻燃剂、纳米阻燃剂等阻燃效率高、环境友好的“绿色”阻燃剂以及高性能阻燃体系成为近年来研究者们关注的重点。
笔者在高性能无卤阻燃聚乳酸材料领域开展了多年的研究,相继对磷-氮膨胀阻燃聚乳酸体系、磷腈/三嗪双基分子阻燃聚乳酸体系、纳米阻燃剂复配阻燃聚乳酸体系以及在阻燃聚乳酸体系中构建微交联体系平衡聚乳酸阻燃材料阻燃性能和力学性能等方面进行了深入的研究,开发出了具有优异阻燃性能和综合性能的阻燃聚乳酸材料。
本书共包括6章内容,分别介绍了阻燃聚乳酸材料的发展和目前的研究热点、磷系阻燃剂阻燃聚乳酸体系、纳米有机改性蒙脱土阻燃聚乳酸体系、磷腈/三嗪双基分子阻燃聚乳酸体系、高性能交联阻燃聚乳酸体系和生物基阻燃剂阻燃聚乳酸体系。本书系统介绍了几种典型的无卤阻燃聚乳酸材料的阻燃性能、力学性能和热稳定性,总结了高性能阻燃聚乳酸材料的阻燃机理,对今后发展高性能阻燃聚乳酸材料具有重要的理论和实践参考价值,希望能为阻燃聚乳酸材料领域的生产技术人员、科研人员、管理人员、学生等提供理论和实践的帮助。
本书的相关研究工作得到了中国轻工业先进阻燃剂工程技术研究中心、北京工商大学阻燃实验室、杭州志合新材料有限公司的支持,也得到了北京工商大学硕士生毛小军、王伟、徐利锋、吴星德、何京秀、孙哲、李梦琪和郝凤昊等的协助,在此表示感谢。本书的研究工作还获得了国家自然科学基金(51503008)、北京市属高校青年拔尖人才项目(CIT&TCD201704040)和北京工商大学校级杰青优青培育计划项目(BTBUYP2021)的资助。本书的出版获得了2021年度北京工商大学学术专著出版资助项目的资助。
目前,本领域的研究仍在不断发展,新的技术和方法不断更新,书中的内容可能存在一定的局限和不足,恳请广大读者批评指正。
陈雅君
2021年6月22日

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.