登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』智能中医信息处理技术与应用(英文版)

書城自編碼: 3668439
分類: 簡體書→大陸圖書→醫學其他
作者: 阿孜古丽·吾拉木、谢永红、张德政
國際書號(ISBN): 9787302582861
出版社: 清华大学出版社
出版日期: 2021-08-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:NT$ 270

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
汽车传感器结构·原理·检测·维修
《 汽车传感器结构·原理·检测·维修 》

售價:NT$ 500.0
怪谈百物语:不能开的门(“日本文学史上的奇迹”宫部美雪重要代表作!日本妖怪物语集大成之作,系列累销突破200万册!)
《 怪谈百物语:不能开的门(“日本文学史上的奇迹”宫部美雪重要代表作!日本妖怪物语集大成之作,系列累销突破200万册!) 》

售價:NT$ 296.0
罗马政治观念中的自由
《 罗马政治观念中的自由 》

售價:NT$ 230.0
中国王朝内争实录:宠位厮杀
《 中国王朝内争实录:宠位厮杀 》

售價:NT$ 281.0
凡事发生皆有利于我(这是一本读了之后会让人运气变好的书”治愈无数读者的心理自助经典)
《 凡事发生皆有利于我(这是一本读了之后会让人运气变好的书”治愈无数读者的心理自助经典) 》

售價:NT$ 203.0
未来特工局
《 未来特工局 》

售價:NT$ 254.0
高术莫用(十周年纪念版 逝去的武林续篇 薛颠传世之作 武学尊师李仲轩家世 凸显京津地区一支世家的百年沉浮)
《 高术莫用(十周年纪念版 逝去的武林续篇 薛颠传世之作 武学尊师李仲轩家世 凸显京津地区一支世家的百年沉浮) 》

售價:NT$ 250.0
英国简史(刘金源教授作品)
《 英国简史(刘金源教授作品) 》

售價:NT$ 449.0

建議一齊購買:

+

NT$ 309
《 医学科研设计与SCI论文写作 》
+

NT$ 325
《 医学是什么(第2版) 》
+

NT$ 294
《 新知文库126·自愈之路:开创癌症免疫疗法的科学家们 》
+

NT$ 3735
《 新疆出土涉医文书辑校 》
+

NT$ 850
《 医道求真系列丛书(全4册套装) 》
+

NT$ 660
《 临床检验质量指标·室内质量控制和室间质量评价 》
編輯推薦:
本书是作者团队在中医领域进行了10余年的应用研究,在国家十五、十一五、十二五及十三五计划项目支持下,形成的中医医案处理技术、中药方剂挖掘技术、基于开放知识源及中医文献的知识获取技术以及中医智能辅助诊断系统等技术论文的集成,希望能为从事中医信息化技术学习和研究的国内外相关研究人员、研究生及本科生提供借鉴,也为弘扬中华传统医学做出贡献。
內容簡介:
The past decades have witnessed the rapid advancements of computational intelligence techniques, including big data, machine learning, and knowledge engineering, in both industrial and academic communities. Specifically, with the diffusion of some computing paradigms such as natural language processing, knowledge graph, reasoning decision, it promotes the computer-assisted diagnosis and treatment in Traditional Chinese Medicine (TCM). Through the integration of our research achievements in the field of intelligent information processing on TCM over the last decade, this book introduces the data processing technologies in TCM medical records and TCM medication, the medical records-based knowledge acquisition, the text-based knowledge acquisition, and the applications of TCM knowledge. We would like to provide a guidance for graduate students, university teachers and professional technicians engaged in knowledge engineering and TCM informatization.
關於作者:
阿孜古丽·吾拉木,北京科技大学计算机与通信工程学院教授,博导;北京科技大学材料领域知识工程北京市重点实验室副主任,主要研究方向为知识工程、知识图谱、深度学习、人工智能。近年来,结合类脑智能技术,从感知的注意力机制、记忆学习以及推理技术等角度,研究形成自然语言实体与关系提取技术、大规模知识图谱、知识库构造与推理技术,以及人工智能知识工程应用技术。承担国家863、国家科技支撑、国家重点研发计划以及北京市省部级课题等30余项。组织实施了北京市科委重大项目“重点行业信息化知识库建设”、研发“大数据征信服务平台”、“工业大数据平台”及“大数据驱动智能诊断系统”等,承担科技部、北京市科委条件平台建设,参与多个智慧城市顶层设计,担任科技部、北京市科委专家。项目研究成果授权发明专利2项,申请发明专利6项,获得北京市科学技术奖二等奖、北京市科学技术进步三等奖、冶金科学技术一等奖、冶金矿山科学技术奖特等奖等,出版了《创新理论与实现技术》、《行业信息化知识库建设实现技术》、《科技与生活同行》、《科学你我他》等系列著作,发表学术论文40余篇。
目錄
1 Data Processing Technology in TCM Records 1
1.1 Structural Technology Research on Symptom Data 1
1.1.1 Analyze the Symptoms 2
1.1.2 Structure the Symptoms 4
1.1.3 Conclusions 7
1.2 Semantic Feature Expansion Technology Based on Knowledge Graph 7
1.2.1 Knowledge Graph and Feature Acquisition Analysis 8
1.2.2 Symptom Normalization in TCM 9
1.2.3 Acquisition of Semantic Features Based on Knowledge Path 13
1.2.4 Experiment Analysis 16
1.2.5 Conclusions 21
1.3 Medical Case Retrieval Method Based on Machine Learning 22
1.3.1 Medical Record Representation 22
1.3.2 Case Retrieval Based on Learning Ranking 25
1.3.3 Experiment and Analysis 28
1.3.4 Conclusions 32
2 Data Processing Technology in TCM Medication 33
2.1 An Intelligent Medication Matching Method for TCM 33
2.1.1 Measure the Correlation between Medications 33
2.1.2 Random Walk Similarity of Nodes 37
2.1.3 The Graph Clustering 39
2.1.4 Experiment 39
2.2 The Core Medications Analysis Based on Social Network Analysis 41
2.2.1 The Social Network Construction about Semantic Relations of
TCM Records 41
2.2.2 Core Medications Analysis Based on Social Network Analysis 42
2.2.3 The Implementation of Core Medications Algorithms 46
2.2.4 Conclusions 48
2.3 Analysis and Mining of Core Prescription Using Fuzzy Cognitive Map 48
2.3.1 Construction of Fuzzy Cognitive Map 49
2.3.2 Realization of Core Prescription Mining 51
2.3.3 Systematic Review 55
2.3.4 Conclusions 57
3 The Medical Records-based Knowledge Acquisition 59
3.1 Centrality Research on the Traditional Chinese Medicine Network 59
3.1.1 Basic Thought and Concept 60
3.1.2 Method to Calculate Betweenness Centrality 62
3.1.3 Betweenness Centrality Algorithm 63
3.1.4 Example Analyses 64
3.1.5 Conclusions 66
3.2 Cognitive Induction Based Knowledge Acquisition 66
3.2.1 Data Preprocessing 66
3.2.2 Inductive Logic Based Inductive Learning Algorithm 68
3.2.3 Graph-based Inductive Learning Algorithm 71
3.2.4 Application of Inductive Learning Algorithm 73
3.3 Analysis on Interactive Structure of Knowledge Acquisition 77
3.3.1 Relevant Work 78
3.3.2 Structural Modeling Analyzing 79
3.3.3 Construction of Structural Model 81
3.3.4 Algorithms 81
3.3.5 Verification & Application 82
3.3.6 Conclusions 84
3.4 Application of Structural Analysis in Knowledge Acquisition of
Traditional Chinese Medicine 84
3.4.1 Structural Modeling 85
3.4.2 Arithmetic and Analysis 87
3.4.3 Application Example 88
3.4.4 Conclusions 91
4 Text-based Knowledge Acquisition 93
4.1 Knowledge Acquisition Based on Open Data Source 93
4.2 Unsupervised TCM Text Segmentation Combined with Domain Dictionary 101
4.2.1 Related Work 102
4.2.2 Method 103
4.2.3 Experience 106
4.2.4 Conclusions 109
4.3 A Phrase Mining Method for TCM 110
4.3.1 Methods 110
4.3.2 Results 115
4.3.3 Conclusions 117
4.4 Improving Distantly-Supervised Named Entity Recognition 117
4.4.1 Related work 119
4.4.2 NER Scheme 120
4.4.3 Experiment 127
4.4.4 Relation Extraction Frame 132
4.5 Nested Named Entity Recognition Method 133
4.5.1 Methodology 135
4.5.2 Experiments 137
4.5.3 Conclusions 141
5 Application of Knowledge of TCM 143
5.1 Fuzzy Ontology Constructing and its Application in TCM 143
5.1.1 Structure of Fuzzy Ontology 143
5.1.2 Application of Fuzzy Ontology 147
5.1.3 Conclusions 150
5.2 Personalized Diagnostic Modal Discovery of TCM Knowledge Graph 150
5.2.1 Access to Medical Data and Normalization 150
5.2.2 Obtain the Medical Records Node and Get the Path and Storage 153
5.2.3 Overlay All Medical Path Results 157
5.2.4 Using the Template 159
5.2.5 Result Analysis 160
5.2.6 Conclusions 168
5.3 Assistant Diagnostic Method of TCM 168
5.3.1 Data Pretreatment 169
5.3.2 Research on Integrated Diagnosis Based on Multi Classification 170
5.3.3 Conclusions 176
5.4 Auxiliary Diagnosis Based on the Knowledge Graph of TCM Syndrome 177
5.4.1 Related Work 177
5.4.2 TCM Diagnosis Path Discovery 181
5.4.3 Meta-path Based on Reasoning Strategy 182
?
5.4.4 Experiment 186
5.4.5 Conclusions 189
References 191
Figure List 195
Table List 199
內容試閱
Preface
The past decades have witnessed the rapid advancements of computational intelligence techniques, including big data, machine learning, and knowledge engineering, in both industrial and academic communities. Specifically, with the diffusion of some computing paradigms such as natural language processing, knowledge graph, reasoning decision, it promotes the computer-assisted diagnosis and treatment in Traditional Chinese Medicine (TCM). Through the integration of our research achievements in the field of intelligent information processing on TCM over the last decade, this book introduces the data processing technologies in TCM medical records and TCM medication, the medical records-based knowledge acquisition, the text-based knowledge acquisition, and the applications of TCM knowledge. We would like to provide a guidance for graduate students, university teachers and professional technicians engaged in knowledge engineering and TCM informatization.
We thank AI Dongmei,CHEN Hongyun, CHEN Xingxing, CHEN Yujia, FAN Yumei, FENG Jim, GAO Lixin, HA Shuang, HU Liangyuan, HU Xiaohui, JIA Qi, LI Cheng, LI Daole, LI Jianyuan, LIU Kan, LIU Jianming, LUO Xiong, MA Yuekun, QIAN Yanxuan, SHAN Ping, SONG Zihao, SUN Yi, XIA Chao, XU Cong, XU Yan, XU Yang, YAN Chang, YAN Yuyang, YANG Shibing, ZANG Honglei, ZHANG Huansheng, ZHANG Jing, ZHANG Yuanyu, ZHAO Yincheng, ZHOU Yuchao and ZHOU Yue for helping us accomplish the work.
Thanks to the graduate students in the laboratory: ZHAN Yuxiao, FAN Xinxin, LI Jia, LI Xuliang, TAO Hu, TU Ruwei, XU Haifeng, YANG Lijia and YANG Juwang, for their work on data compilation.
This work is funded by the Ministry of Science and Technology of Peoples Republic of China (National Key Research and Development Program of China: 2017YFB1002304).

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.