|
內容簡介: |
Thisbookisintendedasatextbookforafirstcourseinthetheoryoffunctionsofonecomplexvariableforstudentswhoaremathematicallymatureenoughtounderstandandexecutearguments.Theactualpre-requisitesforreadingthisbookarequiteminimal;notmuchmorethanastiffcourseinbasiccalculusandafewfactsaboutpartialderivatives.Thetopicsfromadvancedcalculusthatareused(e.g.,Leibnizsrulefordiffer-entiatingundertheintegralsign)areprovedindetail.
|
目錄:
|
Preface
Ⅰ.TheComplexNumberSystem
1.Therealnumbers
2.Thefieldofcomplexnumbers
3.Thecomplexplane
4.Polarrepresentationandrootsofcomplexnumbers
5.Linesandhalfplanesinthecomplexplane
6.Theextendedplaneanditssphericalrepresentation
Ⅱ.MetricSpacesandtheTopologyofC
1.Definitionandexamplesofmetricspaces
2.Connectedness
3.Sequencesandcompleteness
4.Compactness
5.Continuity
6.Uniformconvergence
Ⅲ.ElementaryPropertiesandExamplesofAnalyticFunctions
1.Powerseries
2.Analyticfunctions
3.Analyticfunctionsasmappings,M6biustransformations
Ⅳ.ComplexIntegration
1.Riemann-Stieltjesintegrals
2.Powerseriesrepresentationofanalyticfunctions
3.Zerosofananalyticfunction
4.Theindexofaclosedcurve
5.Cauchy‘sTheoremandIntegralFormula
6.ThehomotopicversionofCauchy’sTheroremandsimpleconnectivity
7.Countingzeros;theOpenMappingTheorem
8.Goursat‘sTheorem
Ⅴ.Singularities
1.Classificationofsingularities
2.Residues
3.TheArgumentPrinciple
VI The Maximum Modulus Theorem
ⅥI.CompactnessandConvergenceinthe
ⅦI.Runge’sTheorem
IX.AnalyticContinuationandRiemannSurfaces
X.HarmonicFunctions
ⅩI.EntireFunctions
ⅪI.TheRangeofanAnalyticFunction
AppendixA:CalculusforComplexComplexValuedFunctionsofandInterval
AppendixB:SuggestionsforFurtherStudyandBibliographicalNotes
References
Index
ListofSymbols
|
|