新書推薦:
《
拯救免疫失衡
》
售價:NT$
254.0
《
收尸人
》
售價:NT$
332.0
《
大模型应用开发:RAG入门与实战
》
售價:NT$
407.0
《
不挨饿快速瘦的减脂餐
》
售價:NT$
305.0
《
形而上学与存在论之间:费希特知识学研究(守望者)(德国古典哲学研究译丛)
》
售價:NT$
504.0
《
卫宫家今天的饭9 附画集特装版(含漫画1本+画集1本+卫宫士郎购物清单2张+特制相卡1张)
》
售價:NT$
602.0
《
化妆品学原理
》
售價:NT$
254.0
《
万千教育学前·与幼儿一起解决问题:捕捉幼儿园一日生活中的教育契机
》
售價:NT$
214.0
|
內容簡介: |
人工智能是计算机科学中应用为广泛的分支之一。作为21世纪三大尖端技术之一,已有大量关于人工智能的研究论著产生。有别于其他主流人工智能专著和教材,《人工智能新视野》以一种全新的视野与思路,以受生物启发的人工智能研究作为主要关注领域,以理论与实践相结合的手法,详细解析其核心理论,深入探讨了人工智能领域中与其相关的经典模型、算法及其具体实现方法;对近30年来全球人工智能界杰出的年轻研究者的工作进行了整理汇总,并结合作者在人工智能相关领域的多年研究工作,展现了人工智能的前沿研究问题和相关应用实例,试图将经典理论和前沿研究紧密结合,真实地反映当代人工智能领域的新思路和新进展。
|
目錄:
|
目录
第一部分 生物启发的人工智能
第1章 人工智能发展简况1
1.1 人工智能领域主要研究成就回顾1
1.1.1 1956年:人工智能的信息处理观2
1.1.2 20世纪60年代:启发式搜索与知识表示3
1.1.3 20世纪80年代:人工神经网络4
1.1.4 20世纪90年代:物化与多代理系统5
1.1.5 21世纪:符号动力学5
1.1.6 我国的人工智能研究6
1.2 人工智能的发展10
1.2.1 从图灵测试到IBM的沃森10
1.2.2 谷歌的智能机器未来12
1.2.3 百度大脑14
1.2.4 微软智能生态16
1.2.5 脸书的深脸18
1.2.6 三大突破让人工智能近在眼前19
1.3 生物启发的人工智能发展里程碑20
1.3.1 遗传算法与进化计算21
1.3.2 神经网络21
1.3.3 群体智能22
1.4 小结22
参考文献23
第2章 进化计算、遗传算法与人工生命25
2.1 受生物启发的计算25
2.1.1 受生物启发的计算科学:康庄大道还是荆棘丛生?25
2.1.2 什么是受生物启发的计算?26
2.1.3 生物学在计算科学研究中的多重角色27
2.2 进化计算28
2.2.1 什么是进化计算?28
2.2.2 进化计算的基本框架与主要特点30
2.2.3 进化计算的分类32
2.2.4 进化计算的若干关键问题32
2.3 遗传算法35
2.3.1 遗传算法的概述36
2.3.2 遗传算法的理论基础38
2.3.3 遗传算法的基本思想40
2.3.4 遗传算法的一个简单的应用实例44
2.4 人工生命46
2.4.1 机器人学1:包容性架构48
2.4.2 机器人学2:受细菌活动启发的机器人趋向性技术49
2.4.3 机器人学3:能量和容错性控制50
2.5 小结51
参考文献51
第3章 神经计算52
3.1 人工神经网络相关介绍52
3.1.1 人工神经网络的起源与发展52
3.1.2 人工神经网络的应用53
3.1.3 小结54
3.2 Hopfield神经网络54
3.2.1 Hopfield神经网络概述54
3.2.2 Hopfield神经网络联想记忆55
3.3 博弈与神经网络的结合57
3.3.1 博弈论概述57
3.3.2 博弈模型与神经网络模型结合的学习模型58
3.4 自组织特征映射网络(SOM)65
3.4.1 快速SOM文本聚类法65
3.4.2 朴素贝叶斯与SOM相结合的混合聚类算法66
3.5 神经芯片与人工生命67
3.5.1 神经芯片的发展及其应用68
3.5.2 人工生命的相关应用69
3.6 深度学习71
3.6.1 深度学习的基本思想71
3.6.2 深度学习的典型结构71
3.6.3 深度学习的应用77
3.6.4 深度学习现状及前景分析80
3.7 人工神经网络与医学影像81
3.7.1 人工神经网络与医学影像概述81
3.7.2 基于人工神经网络的脑成像分类模型介绍82
参考文献84
第4章 群体智能87
4.1 群体智能基本思想87
4.1.1 思想来源87
4.1.2 群体智能的优点及求解问题类型88
4.2 蚁群算法88
4.2.1 蚁群算法主要思想89
4.2.2 蚁群算法基本实现90
4.2.3 蚁群算法应用93
4.3 粒子群优化算法95
4.3.1 基本粒子群优化算法原理95
4.3.2 粒子群优化算法的改进研究97
4.3.3 粒子群优化算法的相关应用99
参考文献101
第5章 变形虫模型与应用105
5.1 变形虫的生物学机理105
5.1.1 迷宫实验106
5.1.2 自适应网络设计实验107
5.2 变形虫模型109
5.2.1 Jones多Agent模型说明109
5.2.2 Gunji等CELL模型说明110
5.2.3 Tero等数学模型说明112
5.3 多Agent模型系统113
5.3.1 系统相关介绍114
5.3.2 模拟变形虫网络118
5.3.3 迷宫求解120
5.4 变形虫IBTM模型系统122
5.4.1 IBTM改进策略介绍122
5.4.2 IBTM模型算法描述125
5.4.3 IBTM模型仿真实验125
5.5 数学模型系统应用129
5.5.1 变形虫多入口多出口数学模型129
5.5.2 基于变形虫多入口多出口模型改进蚁群算法129
5.5.3 实验分析130
5.6 小结134
参考文献135
第6章 智能Agent与多Agent系统137
6.1 智能Agent与Agent模拟软件137
6.1.1 NetLogo138
6.1.2 Swarm138
6.1.3 Repast138
6.1.4 TNG Lab139
6.2 基于Agent的生物免疫系统模拟139
6.2.1 生物免疫系统建模的基本方法139
6.2.2 生物免疫系统建模的方法对比141
6.2.3 基于Agent的生物免疫系统建模方法142
6.2.4 基于Agent免疫系统建模展望145
6.3 基于Agent的经济模拟146
6.3.1 经济与复杂性146
6.3.2 基于Agent的计算经济学147
6.3.3 经济系统模拟案例150
参考文献159
第二部分 人工智能热门研究问题
第7章 AI研究热点161
7.1 人工智能与机器学习161
7.1.1 机器学习简述162
7.1.2 机器学习研究热点(1)——表示学习162
7.1.3 机器学习研究热点(2)——机器学习理论研究163
7.1.4 机器学习研究热点(3)——基于人类认知的学习方法164
7.1.5 机器学习研究热点(4)——复杂问题的遗传编程求解165
7.2 人工智能与交叉学科166
7.2.1 人工智能在交叉学科中的应用简述166
7.2.2 人工智能在交叉学科中的应用(1)——AI与经济学166
7.2.3 人工智能在交叉学科中的应用(2)——AI与算法生物学168
7.2.4 人工智能在交叉学科中的应用(3)——AI与人类计算169
7.3 人工智能与自然语言处理170
7.3.1 自然语言处理简述170
7.3.2 自然语言处理研究热点(1)——AI与语言学170
7.3.3 自然语言处理研究热点(2)——AI与自然语言理解171
7.4 人工智能与数据科学172
7.4.1 异构数据的信息提取172
7.4.2 社交网络中的信任关系研究173
7.4.3 大规模社交媒体数据分析174
7.4.4 基于社交媒体的应用(1)——事件检测与预测175
7.4.5 基于社交媒体的应用(2)——市场预测177
7.5 人工智能与多Agent系统178
7.5.1 多Agent系统的理论研究(1)——奖励机制178
7.5.2 多Agent系统的理论研究(2)——协作机制179
7.5.3 多Agent系统的理论研究(3)——联盟机制180
7.5.4 多Agent系统的理论研究(4)——优化选择182
7.5.5 人工智能与机器人研究(1)——自动驾驶汽车183
7.5.6 人工智能与机器人研究(2)——与机器人对话184
7.5.7 人工智能与机器人研究(3)——多机器人控制185
7.6 人工智能与逻辑学186
7.6.1 逻辑学简述186
7.6.2 逻辑学研究热点(1)——人类级AI187
7.6.3 逻辑学研究热点(2)——结合逻辑与统计概率AI188
7.6.4 逻辑学研究热点(3)——验证信息物理融合系统190
7.6.5 逻辑学研究热点(4)——AI与描述逻辑191
7.7 人工智能与语义学192
7.7.1 语义学简述192
7.7.2 语义学研究热点(1)——语义网络192
7.7.3 语义学研究热点(2)——多模态感知人类非语言行为194
7.7.4 语义学研究热点(3)——AI和本体技术195
7.7.5 语义学研究热点(4)——语义技术应用196
7.7.6 语义学研究热点(5)——关联数据分析197
7.8 人工智能与可视化198
7.8.1 可视化简述198
7.8.2 可视化研究热点(1)——可视化搜索与分析198
7.8.3 可视化研究热点(2)——计算摄影中的图像统计199
7.8.4 可视化研究热点(3)——视觉场景的学习表示201
7.9 小结202
参考文献202
第8章 Turing开创性工作对人工智能研究的启示208
8.1 Turing与人工智能208
8.1.1 孕育人工智能的自然科学208
8.1.2 承载人工智能的计算机科学211
8.1.3 激励人工智能的交叉学科212
8.2 人工智能的发展213
8.3 计算机界的诺贝尔奖——Turing奖214
参考文献214
第三部分 建模、模拟与应用
第9章 社会网络分析215
9.1 基于微博的热点信息发现215
9.1.1 研究内容216
9.1.2 利用外部知识库挖掘热点话题216
9.1.3 基于MA-LDA挖掘热点话题217
9.1.4 基于LDA与MA-LDA挖掘热点话题比较217
9.2 中文微博情感分析222
9.2.1 研究内容222
9.2.2 情感分析模型222
9.2.3 文本预处理与词典构建223
9.2.4 特征值统计方法223
9.2.5 多模型分类结果比较224
9.3 中文微博实体链接225
9.3.1 研究内容225
9.3.2 链接整体框架225
9.3.3 构建实体词典226
9.3.4 模型设计227
9.5 社交网络推荐系统230
9.5.1 研究内容230
9.5.2 基于社交标注网络的推荐系统230
9.5.3 基于隐马尔可夫模型的位置推荐系统232
9.5.4 信任传播推荐系统233
9.5.5 基于多属性的概率矩阵分解推荐系统238
9.6 链接预测241
9.6.1 研究内容241
9.6.2 社会化网络的链接预测241
9.7 小结243
参考文献244
第10章 语义网技术及其应用245
10.1 语义网技术及其在资源整合中的应用245
10.1.1 语义网的概念和体系结构245
10.1.2 本体简介247
10.1.3 基于语义网技术的资源整合方法250
10.1.4 语义网技术在资源整合中的应用251
10.2 语义网技术在农业农村信息化中的应用257
10.2.1 农业农村信息化257
10.2.2 语义网技术在柑橘种植中的应用257
10.2.3 基于语义网技术的柑橘施肥决策
|
|