新書推薦:
《
世界巨变:严复的角色(王中江著作系列)
》
售價:NT$
500.0
《
宋初三先生集(中国思想史资料丛刊)
》
售價:NT$
990.0
《
天生坏种:罪犯与犯罪心理分析
》
售價:NT$
445.0
《
新能源材料
》
售價:NT$
290.0
《
传统文化有意思:古代发明了不起
》
售價:NT$
199.0
《
亚述:世界历史上第一个帝国的兴衰
》
售價:NT$
490.0
《
人工智能与大数据:采煤机智能制造
》
售價:NT$
440.0
《
新民说·逝去的盛景:宋朝商业文明的兴盛与落幕(上下册)
》
售價:NT$
790.0
|
編輯推薦: |
本书是“半导体与集成电路关键技术丛书”的一本,聚焦当前半导体、集成电路产业卡脖子技术的重点课题。
原书作者Tummala是美国佐治亚理工学院杰出教授和终身名誉教授,国际著名工业技术专家、技术先驱和教育家,曾是IBM公司先进系统封装技术实验室主任,现任佐治亚理工学院微系统封装研究中心主任。
本书是Tummala教授在芯片封装技术方面的最新力作!
|
內容簡介: |
全书分为封装基本原理和技术应用两大部分,共有22章。分别论述热机械可靠性,微米与纳米级封装,陶瓷、有机材料、玻璃和硅封装基板,射频和毫米波封装,MEMS和传感器封装,PCB封装和板级组装;封装技术在汽车电子、生物电子、通信、计算机和智能手机等领域的应用。本书分两部分系统性地介绍了器件与封装的基本原理和技术应用。随着摩尔定律走向终结,本书提出了高密集组装小型IC形成较大的异质和异构封装。与摩尔定律中的密集组装*高数量的晶体管来均衡性能和成本的做法相反,摩尔有关封装的定律可被认为是在2D、2.5D和3D封装结构里在较小的器件里互连*小的晶体管,实现*高的性能和*低的成本。
本书从技术和应用两个层面对每个技术概念进行定义,并以系统的方式介绍关键的术语,辅以流程图和图表等形式详细介绍每个技术工艺。本书的最大亮点在于每个专题章节包括基本方程、作业题和未来趋势及推荐阅读文献。
本书可作为科研工程技术人员、高校教师科研参考用书,以及本科生和研究生学习用书。
|
關於作者: |
Rao R.Tummala教授是美国佐治亚理工学院的杰出教授和终身名誉教授,他是著名的工业技术专家、技术先驱和教育家。
在加入佐治亚理工学院之前,他是IBM研究员和IBM公司先进系统封装技术实验室主任。他在20世纪70年代开创了等离子显示器等重大技术;并首先在LTCC(低温共烧陶瓷)、HTCC(高温共烧陶瓷)和薄膜RDL(再分布层)的基础上,开创了前三代100个芯片的MCM(多芯片组件)封装集成,引入了现在服务器、大型机和超级计算机用2.5D封装背后*初的MCM概念。
作为一名教育家,Tummala教授在佐治亚理工学院建立由NSF(美国国家科学基金会)资助的最大学术中心——微系统封装研究中心方面发挥了重要作用,他担任该中心的主任。他率先提出了与美国、欧洲、日本、韩国、印度、中国的公司进行研究、教育以及产业合作的想法。该中心已经培养了1200多名博士和硕士封装工程师,为整个电子行业提供服务。
Tummala教授发表了850篇技术论文,发明的技术获得了110多项专利。他是本也是*畅销的微电子封装参考书
Microelectronics Packaging Handbook的作者,该书是该领域的权威性著作;本本科生教材Fundamentals of Microsystems Packaging的作者;以及引入SOP概念的Introduction to System-on-Package一书的作者。Tummala教授曾获得50多个行业、学术和专业协会奖项。他先后成为NAE会员、IEEE会士、IEEE EPS和IMAPS的前任主席。
|
目錄:
|
目录
序
译者的话
关于编者
致谢
第1章器件与系统封装技术简介
1.1封装的定义和作用
1.1.1封装的定义
1.1.2封装的重要性
1.1.3每个IC和器件都必须进行封装
1.1.4封装制约着计算机的性能
1.1.5封装限制了消费电子的小型化
1.1.6封装影响着电子产品的可靠性
1.1.7封装制约了电子产品的成本
1.1.8几乎一切都需要电子封装工艺
1.2从封装工艺的角度分析封装的电子系统
1.2.1封装的基本原理
1.2.2系统封装涵盖电气、结构和材料技术
1.2.3术语
1.3器件与摩尔定律
1.3.1片上互连
1.3.2互连材料
1.3.3片上互连的电阻和电容延迟
1.3.4器件等比例缩小的未来
1.4电子技术浪潮:微电子学、射频/无线电、光学、微机电系统和
量子器件
1.4.1微电子学:波技术浪潮
1.4.2射频/无线电:第二波技术浪潮
1.4.3光子学:第三波技术浪潮
1.4.4微机电系统:第四波技术浪潮
1.4.5量子器件与计算:第五波技术浪潮
1.5封装与封装摩尔定律
1.5.1三个封装技术时代
1.5.2摩尔定律时代或SOC时代(1960—2010)
1.5.3封装摩尔定律时代(2010—2025)
1.5.4系统时代摩尔定律(2025—)
1.6电子系统技术的趋势
1.6.1核心封装技术
1.6.2封装技术及其发展趋势
1.7未来展望
1.7.1新兴计算系统
1.7.2新兴3D系统封装
1.8本书构架
1.9作业题
1.10推荐阅读文献
第2章信号、电源和电磁干扰的电气设计基础
2.1电子封装设计及其作用
2.2封装的电气构成
2.2.1封装电设计基础
2.2.2术语
2.3信号布线
2.3.1器件及互连
2.3.2基尔霍夫定律与传输时延
2.3.3互连电路的传输线特性
2.3.4特性阻抗
2.3.5封装互连常用的典型传输线结构
2.3.6传输线损耗
2.3.7串扰
2.4电源分配
2.4.1电源噪声
2.4.2电感效应
2.4.3有效电感
2.4.4封装设计对电感的影响
2.4.5去耦电容器
2.5电磁干扰
2.6总结和未来发展趋势
2.7作业题
2.8推荐阅读文献
第3章热管理技术基础
3.1热管理的定义及必要性
3.2封装系统热管理架构
3.2.1传热学基础
3.2.2术语
3.3芯片级热管理技术
3.3.1热界面材料
3.3.2散热片
3.3.3热通孔
3.4模块级热管理技术
3.4.1热沉
3.4.2热管与均热板
3.4.3闭环液冷
3.4.4冷板
3.4.5浸没冷却
3.4.6射流冲击冷却
3.4.7喷淋冷却
3.5系统级热管理技术
3.5.1风冷
3.5.2混合冷却
3.5.3浸没冷却
3.6电动汽车的动力和冷却技术
3.7总结和未来发展趋势
3.8作业题
3.9推荐阅读文献
第4章热-机械可靠性基础
4.1什么是热-机械可靠性
4.2封装失效和失效机理剖析
4.2.1热-机械可靠性基本原理
4.2.2热-机械建模
4.2.3术语
4.3热-机械引起的失效类型及其可靠性设计准则
4.3.1疲劳失效
4.3.2脆性断裂
4.3.3蠕变引起的失效
4.3.4分层引起的失效
4.3.5塑性变形失效
4.3.6翘曲引起的失效
4.4总结和未来发展趋势
4.5作业题
4.6推荐阅读文献
第5章微米与纳米级封装材料基础
5.1材料在封装中的作用是什么
5.2具有各种材料的封装剖析
5.2.1封装材料基础
5.2.2术语
5.3封装材料、工艺和特性
5.3.1封装基板材料、工艺和特性
5.3.2互连和组装材料、工艺和特性
5.3.3无源元件材料、工艺和特性
5.3.4热和热界面材料、工艺和特性
5.4总结和未来发展趋势
5.5作业题
5.6推荐阅读文献
第6章陶瓷、有机材料、玻璃和硅封装基板基础
6.1什么是封装基板,为什么使用封装基板
6.2三种封装基板剖析:陶瓷、有机材料和硅基板
6.2.1封装基板基础
6.2.2术语
6.3封装基板技术
6.3.1历史发展趋势
6.4厚膜基板
6.4.1陶瓷基板
6.5薄膜基板
6.5.1有机材料基板
6.5.2玻璃基板
6.6采用半导体封装工艺加工的超薄膜基板
6.6.1硅基板
6.7总结和未来发展趋势
6.8作业题
6.9推荐阅读文献
第7章无源元件与有源器件集成基础
7.1什么是无源元件,为什么用无源元件
7.2无源元件分析
7.2.1无源元件的基本原理
7.2.2术语
7.3无源元件技术
7.3.1分立无源元件
7.3.2集成无源元件
7.3.3嵌入式分立无源元件
7.3.4嵌入式薄膜无源元件
7.4无源和有源功能模块
7.4.1射频模块
7.4.2功率模块
7.4.3电压调节器功率模块
7.5总结和未来发展趋势
7.6作业题
7.7推荐阅读文献
第8章芯片到封装互连和组装基础
8.1什么是芯片到封装互连和组装,以及为什么要做
8.2互连和组装的剖析
8.2.1芯片级互连和组装的类型
8.2.2互连和组装基础
8.2.3组装与键合基础
8.2.4术语
8.3互连和组装技术
8.3.1演进
8.3.2引线键合
8.3.3载带自动焊
8.3.4倒装焊互连和组装技术
8.3.5带焊料帽的铜柱技术
8.3.6SLID互连和组装技术
8.4互连和组装的未来趋势
8.5作业题
8.6推荐阅读文献
第9章嵌入与扇出型封装基础
9.1嵌入和扇出型封装的定义及采用原因
9.1.1为什么采用嵌入和扇出型封装
9.2扇出型晶圆级封装结构
9.2.1典型扇出型晶圆级封装工艺
9.2.2扇出型晶圆级封装技术基础
9.2.3术语
9.3扇出型晶圆级封装技术
9.3.1分类
9.3.2材料和工艺
9.3.3扇出型晶圆级封装工具
9.3.4扇出晶圆级封装技术的挑战
9.3.5扇出型晶圆级封装的应用
9.4在制板级封装
9.4.1在制板级封装的定义及采用原因
9.4.2在制板级封装制造基础设施的种类
9.4.3在制板级封装的应用
9.5总结和未来发展趋势
9.6作业题
9.7推荐阅读文献
第10章采用和不采用TSV的3D封装基础
10.1TSV-3D集成电路的概念
10.1.1采用TSV实现3D集成电路
10.2采用TSV的3D封装剖析
10.2.1采用TSV的3D 集成电路基础
10.2.2术语
10.3采用TSV技术的3D集成电路
10.3.1TSV
10.3.2超薄集成电路
10.3.3后道RDL布线技术
10.3.43D堆叠的芯片互连
10.3.53D堆叠集成电路的封装
10.3.6底部填充
10.4总结和未来发展趋势
10.5作业题
10.6推荐阅读文献
10.7致谢
第11章射频和毫米波封装的基本原理
11.1什么是射频,为什么用射频
11.1.1历史与发展
11.1.2部手机是什么时候推出的
11.2射频系统的概述
11.2.1射频的基本原理
11.2.2射频名词术语
11.3射频技术与应用
11.3.1收发机
11.3.2发射机
11.3.3接收机
11.3.4调制方式
11.3.5天线
11.3.6射频前端模块中的元器件
11.3.7滤波器
11.3.8射频材料和元器件
11.3.9射频建模与表征技术
11.3.10射频的应用
11.4什么是毫米波系统
11.5毫米波封装剖析
11.5.1毫米波封装的基本原理
11.6毫米波技术与应用
11.6.15G及以上
11.6.2汽车雷达
11.6.3毫米波成像
11.7总结和未来发展趋势
11.8作业题
11.9推荐阅读文献
第12章光电封装的基础知识
12.1什么是光电子学
12.2光电系统的剖析
12.2.1光电子学基础
12.2.2术语
12.3光电子技术
12.3.1有源光电子器件
12.3.2无源光电子器件
12.3.3光学互连
12.4光电系统、应用和市场
12.4.1光电系统
12.4.2光电子学应用
12.4.3光电子市场
12.5总结和未来发展趋势
12.6作业题
12.7推荐阅读文献
第13章MEMS原理与传感器封装基础
13.1什么是MEMS
13.1.1历史演变
13.2MEMS封装的分析
13.2.1MEMS封装原理
13.2.2术语
13.3MEMS与传感器器件制造技术
13.3.1光刻图形转移
13.3.2薄膜沉积
13.3.3干法和湿法刻蚀
13.3.4硅的体和表面微加工
13.3.5晶圆键合
13.3.6激光微加工
13.3.7工艺集成
13.4MEMS封装技术
13.4.1MEMS封装材料
13.4.2MEMS封装工艺流程
13.5MEMS及其传感器的应用
13.5.1压力传感器
13.5.2加速度计和陀螺仪
13.5.3投影显示器
13.6总结和未来发展趋势
13.7作业题
13.8推荐阅读文献
第14章包封、模塑和密封的基础知识
14.1什么是密封和包封,为什么要这么做
14.2包封和密封封装的结构
14.2.1包封和密封的基本功能
14.2.2术语
14.3包封材料的性能
14.3.1机械性能
14.3.2热学性能
14.3.3物理性能
14.4包封材料
14.4.1环氧树脂和相关材料
14.4.2氰酸酯
14.4.3聚氨酯橡胶
14.4.4有机硅
14.5包封工艺
14.5.1模塑
14.5.2液体包封
14.6气密性封装
14.6.1密封工艺
14.7总结和未来发展趋势
14.8作业题
14.9推荐阅读文献
第15章印制线路板原理
15.1什么是印制线路板
15.2印制线路板的剖切结构
15.2.1印制线路板的基本原理
15.2.2印制线路板的类型
15.2.3印制线路板的材料等级
15.2.4单面至多层板及其应用
15.2.5印制线路板的设计要素
15.2.6术语
15.3印制线路板技术
15.3.1印制线路板材料
15.3.2印制线路板制造
15.3.3印制线路板应用
15.4总结和未来发展趋势
15.5作业题
15.6推荐阅读文献
第16章板级组装基本原理
16.1印制电路板组件的定义和作用
16.2印制电路板组件结构
16.2.1PCBA的基本原理
16.2.2术语
16.3PCBA技术
16.3.1PCB基板
16.3.2封装基板
16.4印制电路板组装的类型
16.4.1镀覆通孔组装
16.4.2表面安装组装
16.5组装焊接工艺类型
16.5.1回流焊
16.5.2PTH波峰焊
16.6总结和未来发展趋势
16.7作业题
16.8推荐阅读文献
16.9致谢
第17章封装技术在未来汽车电子中的应用
17.1未来汽车电子:是什么,为什么
17.2未来汽车剖析
17.2.1未来汽车的基本原理
17.2.2术语
17.3未来汽车电子技术
17.3.1计算与通信
17.3.2传感电子
17.3.3大功率电子
17.4总结和未来发展趋势
17.5作业题
17.6推荐阅读文献
第18章封装技术在生物电子中的应用
18.1什么是生物电子学
18.1.1生物电子学的应用
18.1.2生物电子系统剖析
18.2生物电子系统封装技术
18.2.1生物兼容和生物稳定型封装
18.2.2异构系统集成
18.3生物电子植入物举例
18.3.1心脏起搏器和电子支架
18.3.2人工耳蜗
18.3.3视网膜假体
18.3.4神经肌肉刺激器
18.3.5脑神经记录和刺激
18.4总结和未来发展趋势
18.5作业题
18.6推荐阅读文献
第19章封装技术在通信系统中的应用
19.1什么是通信系统
19.2两种通信系统剖析:有线和无线
19.2.1有线通信系统剖析
19.2.2无线通信系统剖析
19.3通信系统技术
19.3.1历史演变
19.3.2通信系统技术
19.3.3无线通信系统技术
19.4总结和未来发展趋势
19.5作业题
19.6推荐阅读文献
第20章封装技术在计算机系统中的应用
20.1什么是计算机封装
20.2对计算机封装的剖析
20.2.1计算机封装基础
20.2.2计算系统的类型
20.2.3术语
20.3计算机封装技术
20.3.1演进历程
20.3.2互连技术
20.3.3信号和电源的互连设计
20.4热技术
20.4.1热管理
20.4.2热-机械可靠性
20.4.3材料技术
20.5总结和未来发展趋势
20.5.1封装摩尔定律的起点
20.5.2封装成本的摩尔定律
20.6作业题
20.7推荐阅读文献
20.8致谢
第21章封装技术在柔性电子中的应用
21.1什么是柔性电子,为什么叫作柔性电子
21.1.1应用
21.2柔性电子系统的结构剖析
21.2.1柔性电子技术基础
21.2.2术语
21.3柔性电子技术
21.3.1元器件技术
21.3.2柔性电子技术的工艺集成
21.3.3柔性基板上的元器件组装
21.4总结和未来发展趋势
21.5作业题
21.6推荐阅读文献
第22章封装技术在智能手机中的应用
22.1什么是智能手机
22.1.1为什么需要智能手机
22.1.2智能手机的历史演进
22.2智能手机剖析
22.2.1智能手机基础
22.2.2术语
22.3智能手机封装技术
22.3.1应用处理器封装
22.3.2内存封装
22.3.3射频封装
22.3.4功率封装
22.3.5MEMS和传感器封装
22.4智能手机中的系统封装
22.5总结和未来发展趋势
22.6作业题
22.7推荐阅读文献
|
內容試閱:
|
序
随着摩尔定律“趋向尽头”,全球微电子器件发展开始进入后摩尔时代,异质异构集成技术进入核心发展阶段。与此同时,微电子器件和系统封装也进入2.5D和3D发展阶段,封装的摩尔定律开始崭露头角,并展现出巨大发展潜力。微电子器件和系统的封装不断涌现新结构、新材料、新工艺、新应用,共同推动着微电子技术继续向前发展,使微电子技术和相关产业成了当前各工业发达国家的经济发展基础和先进国防基础。近年来,我国的微电子器件和封装产业也有了飞速的发展,迫切需要更多掌握相关微电子器件和系统封装技术和应用的人才,长期从事微电子器件和系统封装的科研人员也需要更新和扩展相关知识。而微电子器件和系统封装涉及器件、封装结构设计、材料、工艺、电设计、热管理、热-机械性能、可靠性等多种学科,需要一批较好的有关微电子器件和系统封装的科研参考资料和教学参考书。本书的出版,将对我国高校微电子专业高年级本科生、研究生,尤其是从事微电子和系统封装技术研究的学生,以及从事微电子和系统封装相关制造、研究和从事微电子和系统器件应用的专业技术人员都将会有较大帮助。
本书由美国Rao R.Tummala教授主编,McGraw-Hill公司出版,是Tummala教授主编的第四本有关微电子封装的书。本书共有22章,分为技术与应用两大部分,其中部分包括第1~16章为封装技术基础,第二部分包括第17~22章为新型封装技术应用。部分内容涉及封装设计,如结构设计、电设计、热设计、热-机械设计等;封装材料,如封装中的微米和纳米级封装材料,陶瓷、有机材料、玻璃和硅封装基板;封装技术:无源、有源元器件集成,互连和组装,三维堆叠等,射频和毫米波封装,光电封装,MEMS和传感器封装,系统和板级封装。第二部分内容包括封装技术新应用,如在汽车电子、生物电子、通信、计算机和智能手机等领域的应用。
Tummala教授在书中创新性地提出,摩尔定律亦可以用于封装领域。在这个概念中,封装意味着互连,尽管摩尔定律一直只适用于集成电路,但如今可以应用于封装领域。实际上,过去集成电路是单芯片集成化,现在是封装集成化。
本书由来自全球不同高校和公司的16位知名学者和专家编著,其中以美国佐治亚理工学院的教授和博士为主,具有一定权威性。另有德国、中国、韩国和日本的专家参与编写,保证了各章内容的完整性、实用性和新颖性。Rao R.Tummala是美国工程院院士和印度工程院院士,前IBM会士,美国佐治亚理工学院封装研究中心(PRC)的教授和创立者,国际电气与电子工程师学会(IEEE)下的元器件封装与制造技术学会(CPMT)和国际微电子与封装协会(IMAPS)前主席、IEEE会士、美国陶瓷学会会士。Tummala博士获得过多项工业界、学术界和专业机构的奖项,其中包括作为全美50大杰出者之一获得工业周刊的奖项。他著有5本专业书籍,发表专业论文425篇,拥有72项专利和发明。
本书翻译以中国电子科技集团有限公司所属相关研究所的首席科学家、首席专家团队为核心,联合
东南大学等高校相关领域的教授、学者、专家和工程师共同完成。
作为本书英文第1版的中文主译者之一,看到本书能够顺利出版,我感到十分高兴。正是中国
电科团队的努力付出,才取得今天的成绩。相信本书对于我国第三代封装技术的发展大有意义!
黄庆安
东南大学教授,IEEE Fellow
2021年5月
译者的话
本书翻译以中国电子科技集团有限公司所属相关研究所的首席科学家、首席专家团队为核心,联合东南大学等高校相关领域的教授、学者、专家和工程师共同完成。由于原书各位作者的写作风格不同,以及国际、国内物理量单位的变化沿革,同一物理量在不同作者撰写的章节中,甚至同一作者的同一章节在不同场合下也会使用不同的单位,如英制和美制、华氏温度和摄氏温度等。受制于图表数据转换的复杂性,本书仅把长度单位统一转换为公制,其余均按照原文翻译,以求表述准确。
另外,原书内容丰富、前沿技术较新,且是多人合作编写,难免在文字、公式和符号等方面存在差错。对一些明显的差错,译、校者已做了订正和注释,以便读者对照原书进行参考,特别是对原书中值得商榷的地方,均以”译者注”、”校者注”表明。同时,由于本书涉及内容较新、较广,有的专业词尚无统一的标准译名,不同译者在理解上存在差异,且专业内容跨度较大,本书虽然已经过多次审校,仍可能有错译、误译以及不妥之处,恳请广大读者给予原谅并指正。
衷心感谢参与本书翻译、审校的各位译者和审校者,没有他们渊博的知识和忘我认真的工作,本书是很难达到目前水平的。衷心感谢在本书翻译过程中给予我们支持和帮助过的所有朋友和人士。如果本书对读者、对我国的微电子封装的教学和微电子封装产业的发展有所帮助,那将是我们的欣慰。
后,感谢机械工业出版社电工电子分社对
我们的信任,以及付承桂副社长认真细致的工作和良好的协同合作精神。后要特别感谢中国电子学会电子封装专业委员会原副主任、电子封装丛书编辑委员会原副主任、清华大学贾松良教授花长时间对全书主要章节的审校,改正了译文和原文中的部分差错和订正了部分封装专业术语的译名,使本书得以按质按期出版。
|
|