登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』Rubber Reinforcement with Particulate Fillers(粒状填料对橡胶的补强)

書城自編碼: 3615061
分類: 簡體書→大陸圖書→工業技術化學工業
作者: 王梦蛟,迈克尔·莫里斯 著
國際書號(ISBN): 9787122383013
出版社: 化学工业出版社
出版日期: 2021-04-01

頁數/字數: /
書度/開本: 16开 釘裝: 精装

售價:NT$ 2888

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
新时代硬道理 广东寻路高质量发展
《 新时代硬道理 广东寻路高质量发展 》

售價:NT$ 352.0
6S精益管理实战(精装版)
《 6S精益管理实战(精装版) 》

售價:NT$ 458.0
异域回声——晚近海外汉学之文史互动研究
《 异域回声——晚近海外汉学之文史互动研究 》

售價:NT$ 500.0
世界文明中的作物迁徙:聚焦亚洲、中东和南美洲被忽视的本土农业文明
《 世界文明中的作物迁徙:聚焦亚洲、中东和南美洲被忽视的本土农业文明 》

售價:NT$ 454.0
无端欢喜
《 无端欢喜 》

售價:NT$ 347.0
股票大作手操盘术
《 股票大作手操盘术 》

售價:NT$ 245.0
何以中国·何谓唐代:东欧亚帝国的兴亡与转型
《 何以中国·何谓唐代:东欧亚帝国的兴亡与转型 》

售價:NT$ 398.0
一间只属于自己的房间 女性主义先锋伍尔夫代表作 女性精神独立与经济独立的象征,做自己,比任何事都更重要
《 一间只属于自己的房间 女性主义先锋伍尔夫代表作 女性精神独立与经济独立的象征,做自己,比任何事都更重要 》

售價:NT$ 203.0

編輯推薦:
本书是橡胶补强相关的理论和应用研究的综述。
详细地说明了填料的微观结构、基本性质及它们表征的原理和方法;
理论上阐述了填料在橡胶中的各种效应及这些效应是如何影响填充橡胶的加工性能和硫化胶的物理机械性能,诸如静态及动态应力-应变特性及破坏特性;
机理上论述了硫化胶性能与橡胶制品,尤其是与轮胎的使用性能之间的关系。
內容簡介:
本书是主要阐述粒状填料对橡胶补强的学术专著。填料对橡胶补强是橡胶工业中应用*为广泛的技术之一,99%以上的橡胶制品均含填料,而炭黑和二氧化硅(白炭黑)是常用的填料。目前填料的研究和开发已成为橡胶科技研究中*活跃的领域。
本书除简单介绍填料的制作过程外,着重详细说明填料的微观结构、基本性质及它们表征的原理和方法。在此基础上,本书从理论上阐述了填料在橡胶中的各种效应及这些效应是如何影响填充橡胶的加工性能、硫化胶在溶剂中的溶胀行为和物理机械性能,诸如静态及动态应力-应变特性及破坏特性,并从机理上论述了上述硫化胶性能与橡胶制品,尤其是轮胎的最终使用性能之间的关系。
本书对于橡胶行业的工程师和产品开发人员,以及从事橡胶研究的技术人员、教师和学生是很好的参考资料。
關於作者:
王梦蛟,国家橡胶与轮胎工程技术研究中心任首席科学家,怡维怡橡胶研究院院长。美国卡博特公司前首席科学家。1984年,于法国国家科学研究中心(CNRS)获得博士学位。曽任职于原化工部北京橡胶工业研究设计院、美国阿克隆大学、德国橡胶工业研究院(DIK)、德国Degussa公司。
王梦蛟在橡胶行业耕耘至今已达56年。发表科学论文共140余篇,获得55个美国和中国的授权专利及其相应的24个PCT专利。曾参与了《Carbon Black:Science and Technology》等10本专业书的章节编写,主译了5本橡胶专业书籍。曾担任美国Rubber Chemistry and Technology杂志编委。
王梦蛟,国家橡胶与轮胎工程技术研究中心任首席科学家,怡维怡橡胶研究院院长。美国卡博特公司前首席科学家。1984年,于法国国家科学研究中心(CNRS)获得博士学位。曽任职于原化工部北京橡胶工业研究设计院、美国阿克隆大学、德国橡胶工业研究院(DIK)、德国Degussa公司。
王梦蛟在橡胶行业耕耘至今已达56年。发表科学论文共140余篇,获得55个美国和中国的授权专利及其相应的24个PCT专利。曾参与了《Carbon Black:Science and Technology》等10本专业书的章节编写,主译了5本橡胶专业书籍。曾担任美国Rubber Chemistry and Technology杂志编委。
Michael Morris现任美国卡博特公司高级科学家。1985年于南安普顿大学获博士学位。先后任职于英国马来西亚橡胶生产者研究协会(MRPRA)、马来西亚橡胶研究院。1996年加入卡博特公司后,主要从事气相法白炭黑、炭黑在橡胶中的补强研究。
Morris博士已发表18篇论文,参与两本书的编写,获得12个美国授权专利和很多对应的PCT专利。
目錄
Preface Ⅰ
About the Authors Ⅲ
1. Manufacture of Fillers 1
1.1 Manufacture of Carbon Black 3
1.1.1 Mechanisms of Carbon Black Formation 3
1.1.2 Manufacturing Process of Carbon Black 6
1.1.2.1 Oil-Furnace Process 6
1.1.2.2 The Thermal Black Process 10
1.1.2.3 Acetylene Black Process 11
1.1.2.4 Lampblack Process 11
1.1.2.5 Impingement Channel, Roller Black Process 12
1.1.2.6 Recycle Blacks 12
1.1.2.7 Surface Modification of Carbon Blacks 13
1.1.2.7.1 Attachments of the Aromatic Ring Nucleus to Carbon Black 13
1.1.2.7.2 Attachments to the Aromatic Ring Structure through Oxidized Groups 13
1.1.2.7.3 Metal Oxide Treatment 14
1.2 Manufacture of Silica 14
1.2.1 Mechanisms of Precipitated Silica Formation 15
1.2.2 Manufacturing Process of Precipitated Silica 16
1.2.3 Mechanisms of Fumed Silica Formation 18
1.2.4 Manufacture Process of Fumed Silica 18
References 19
2. Characterization of Fillers 22
2.1 Chemical Composition 23
2.1.1 Carbon Black 23
2.1.2 Silica 25
2.2 Micro-Structure of Fillers 27
2.2.1 Carbon Black 27
2.2.2 Silica 29
2.3 Filler Morphologies 29
2.3.1 Primary Particles-Surface Area 29
2.3.1.1 Transmission Electron Microscope TEM 30
2.3.1.2 Gas Phase Adsorptions 34
2.3.1.2.1 Total Surface Area Measured by Nitrogen Adsorption-BETNSA 35
2.3.1.2.2 External Surface Area Measured by Nitrogen Adsorption-STSA 41
2.3.1.2.3 Micro-Pore Size Distribution Measured by Nitrogen Adsorption 46
2.3.1.3 Liquid Phase Adsorptions 51
2.3.1.3.1 Iodine Adsorptions 52
2.3.1.3.2 Adsorption of Large Molecules 56
2.3.2 Structure-Aggregate Size and Shape 61
2.3.2.1 Transmission Electron Microscopy 62
2.3.2.2 Disc Centrifuge Photosedimentometer 66
2.3.2.3 Void Volume Measurement 68
2.3.2.3.1 Oil Absorption 69
2.3.2.3.2 Compressed Volume 75
2.3.2.3.3 Mercury Porosimetry 80
2.3.3 Tinting Strength 83
2.4 Filler Surface Characteristics 92
2.4.1 Characterization of Surface Chemistry of Filler-Surface Groups 92
2.4.2 Characterization of Physical Chemistry of Filler Surface-Surface Energy 93
2.4.2.1 Contact Angle 98
2.4.2.1.1 Single Liquid Phase 98
2.4.2.1.2 Dual Liquid Phases 102
2.4.2.2 Heat of Immersion 106
2.4.2.3 Inverse Gas Chromatograph 111
2.4.2.3.1 Principle of Measuring Filler Surface Energy with IGC 111
2.4.2.3.2 Adsorption at Infinite Dilution 112
2.4.2.3.3 Adsorption at Finite Concentration 118
2.4.2.3.4 Surface Energy of the Fillers 123
2.4.2.3.5 Estimation of Rubber-Filler Interaction from Adsorption Energy of Elastomer Analogs 139
2.4.2.4 Bound Rubber Measurement 142
References 143
3. Effect of Fillers in Rubber 153
3.1 Hydrodynamic Effect ? Strain Amplification 153
3.2 Interfacial Interaction between Filler and Polymer 155
3.2.1 Bound Rubber 155
3.2.2 Rubber Shell 159
3.3 Occlusion of Rubber 161
3.4 Filler Agglomeration 163
3.4.1 Observations of Filler Agglomeration 163
3.4.2 Modes of Filler Agglomeration 164
3.4.3 Thermodynamics of Filler Agglomeration 167
3.4.4 Kinetics of Filler Agglomeration 170
References 173
4. Filler Dispersion 177
4.1 Basic Concept of Filler Dispersion 177
4.2 Parameters Influencing Filler Dispersion 179
4.3 Liquid Phase Mixing 187
References 191
5. Effect of Fillers on the Properties of Uncured Compounds 193
5.1 Bound Rubber 193
5.1.1 Significance of Bound Rubber 194
5.1.2 Measurement of Bound Rubber 195
5.1.3 Nature of Bound Rubber Attachment 197
5.1.4 Polymer Mobility in Bound Rubber 202
5.1.5 Polymer Effects on Bound Rubber 203
5.1.5.1 Molecular Weight Effects 203
5.1.5.2 Polymer Chemistry Effects 203
5.1.6 Effect of Filler on Bound Rubber 204
5.1.6.1 Surface Area and Structure 204
5.1.6.2 Specific Surface Activity of Carbon Blacks 206
5.1.6.3 Effect of Surface Characteristics on Bound Rubber 210
5.1.6.4 Carbon Black Surface Modification 211
5.1.6.5 Silica Surface Modification 215
5.1.7 Effect of Mixing Conditions on Bound Rubber 215
5.1.7.1 Temperature and Time of Mixing 216
5.1.7.2 Mixing Sequence Effect of Rubber Ingredients 218
5.1.7.2.1 Mixing Sequence of Oil and Other Additives 219
5.1.7.2.2 Mixing Sequence of Sulfur, Sulfur Donor, and Other Crosslinkers 221
5.1.7.2.3 Bound Rubber of Silica Compounds 222
5.1.7.3 Bound Rubber in Wet Masterbatches 223
5.1.7.4 Bound Rubber of Fumed Silica-Filled Silicone Rubber 225
5.2 Viscosity of Filled Compounds 227
5.2.1 Factors Influencing Viscosity of the Carbon Black-Filled Compounds 227
5.2.2 Master Curve of Viscosity vs. Effective Volume of Carbon Blacks 230
5.2.3 Viscosity of Silica Compounds 233
5.2.4 Viscosity Growth ? Storage Hardening 238
5.3 Die Swell and Surface Appearance of the Extrudate 241
5.3.1 Die Swell of Carbon Black Compounds 241
5.3.2 Die Swell of Silica Compounds 246
5.3.3 Extrudate Appearance 247
5.4 Green Strength 249
5.4.1 Effect of Polymers 249
5.4.2 Effect of Filler Properties 252
References 255
6. Effect of Fillers on the Properties of Vulcanizates 263
6.1 Swelling 263
6.2 Stress-Strain Behavior 271
6.2.1 Low Strain 271
6.2.2 Hardness 274
6.2.3 Medium and High Strains-The Strain Dependence of Modulus 275
6.3 Strain-Energy Loss-Stress-Softening Effect 279
6.3.1 Mechanisms of Stress-Softening Effect 282
6.3.1.1 Gum 282
6.3.1.2 Filled Vulcanizates 283
6.3.1.3 Recovery of Stress Softening 287
6.3.2 Effect of Fillers on Stress Softening 288
6.3.2.1 Carbon Blacks 288
6.3.2.1.1 Effect of Loading 288
6.3.2.1.2 Effect of Surface Area 289
6.3.2.1.3 Effect of Structure 290
6.3.2.2 Precipitated Silica 290
6.4 Fracture Properties 295
6.4.1 Crack Initiation 295
6.4.2 Tearing 296
6.4.2.1 State of Tearing 296
6.4.2.1.1 Effect of Filler 301
6.4.2.1.2 Effect of Polymer Crystallizability and Network Structure 302
6.4.2.2 Tearing Energy 306
6.4.2.2.1 Effect of Filler 306
6.4.2.2.2 Effect of Polymer Crystallizability and Network Structure 307
6.4.3 Tensile Strength and Elongation at Break 315
6.4.4 Fatigue 318
References 321
7. Effect of Fillers on the Dynamic Properties of Vulcanizates 329
7.1 Dynamic Properties of Vulcanizates 329
7.2 Dynamic Properties of Filled Vulcanizates 332
7.2.1 Strain Amplitude Dependence of Elastic Modulus of Filled Rubber 332
7.2.2 Strain Amplitude Dependence of Viscous Modulus of Filled Rubber 340
7.2.3 Strain Amplitude Dependence of Loss Tangent of Filled Rubber 343
7.2.4 Hysteresis Mechanisms of Filled Rubber Concerning Different Modes of Filler Agglomeration 348
7.2.5 Temperature Dependence of Dynamic Properties of Filled Vulcanizates 350
7.3 Dynamic Stress Softening Effect 354
7.3.1 Stress-Softening Effect of Filled Rubbers Measured with Mode 2 355
7.3.2 Effect of Temperature on Dynamic Stress-Softening 359
7.3.3 Effect of Frequency on Dynamic Stress-Softening 360
7.3.4 Stress-Softening Effect of Filled Rubbers Measured with Mode 3 362
7.3.5 Effect of Filler Characteristics on Dynamic Stress-Softening and Hysteresis 369
7.3.6 Dynamic Stress-Softening of Silica Compounds Produced by Liquid Phase Mixing 371
7.4 Time-Temperature Superposition of Dynamic Properties of Filled Vulcanizates 376
7.5 Heat Build-up 385
7.6 Resilience 387
References 389
8. Rubber Reinforcement Related to Tire Performance 394
8.1 Rolling Resistance 394
8.1.1 Mechanisms of Rolling Resistance-Relationship between Rolling Resistance and Hysteresis 394
8.1.2 Effect of Filler on Temperature Dependence of Dynamic Properties 396
8.1.2.1 Effect of Filler Loading 396
8.1.2.2 Effect of Filler Morphology 397
因字数限制,仅展示部分目录
內容試閱
Soon after rubbers discovery as a remarkable material in the 18th century, the application of particulate fillers ? alongside vulcanization ? became the most important factor in the manufacture of rubber products, with the consumption of these particulate fillers second only to rubber itself. Fillers have held this important position not only as a cost savings measure by increasing volume, but more importantly, due to their unique ability to enhance the physical properties of rubber, a well-documented phenomenon termed reinforcement. In fact, the term filler is misleading because for a large portion of rubber products, tires in particular, the cost of filler per unit volume is even higher than that of the polymer. This is especially true for the reinforcement of elastomers by extremely fine fillers such as carbon black and silica. This subject has been comprehensively reviewed in the monographs Reinforcement of Elastomers, edited by G. Kraus 1964, Carbon Black: Physics, Chemistry, and Elastomer Reinforcement, written by J.-B. Donnet and A. Voet 1975, and Carbon Black: Science and Technology, edited by J.-B. Donnet, R. C. Bansal, and M.-J. Wang 1993. There has since been much progress in the fundamental understanding of rubber reinforcement, the application of conventional fillers, and the development of new products to improve the performance of rubber products.
While all agree that fillers as one of the main components of a filled-rubber composite have the most important bearing on improving the performance of rubber products, many new ideas, theories, practices, phenomena, and observations have been presented about how and especially why they alter the processability of filled compounds and the mechanical properties of filled vulcanizates.
This suggests that the real world of filled rubber is so complex and sophisticated that multiple mechanisms must be involved. It is possible to explain the effect of all fillers on rubber properties ultimately in similar and relatively nonspecific terms, i.e., the phenomena related to all filler parameters should follow general rules or principles. It is the authors belief that, regarding the impact of filler on all aspects of rubber reinforcement, filler properties, such as microstructure, morphology, and surface characteristics, play a dominant role in determining the properties of filled rubbers, hence the performance of rubber products, via their effects in rubber. These effects, which include hydrodynamic, interfacial, occlusion, and agglomeration of fillers, determine the structure of this book.
The first part of the book is dedicated to the basic properties of fillers and their characterization, followed by a chapter dealing with the effect of fillers in rubber. Based on these two parts, the processing of the filled compounds and the properties of the filled vulcanizates are discussed in detail. The last few chapters cover some special applications of fillers in tires, the new development of fillerrelated materials for tire applications, and application of fumed silica in silicone rubber. All chapters emphasize an internal logic and consistency, giving a full picture about rubber reinforcement by particulate fillers. As such, this work is intended for those working academically and industrially in the areas of rubber and filler.
We would like to express our heartfelt thanks to Wangs colleagues at the EVE Rubber Institute Mr. Weijie Jia, Mr. Fujin He, Dr. Bin Wang, Dr. Wenrong Zhao, Dr. Hao Zhang, Dr. Mingxiu Xie, Dr. Yudian Song, Dr. Feng Liu, Dr. Liang Zhong, Dr. Bing Yao, Dr. Dan Zhang, Dr. Kai Fu, and Mr. Shuai Lu for their assistance in preparing this book. Special thanks are due to the EVE Rubber Institute, Qingdao, China and Cabot Corporation, USA. Without their firm backing and continuous understanding, this effort could not have been accomplished.
Meng-Jiao Wang, Sc. D., Professor
EVE Rubber Institute, Qingdao, China
Michael Morris, Ph. D., Cabot Corporation
Billerica, Massachusetts USA

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.