新書推薦:
《
武人琴音(十周年纪念版 逝去的武林系列收官之作 形意拳一门三代:尚云祥、韩伯言、韩瑜的人生故事 凸显百年武人命运)
》
售價:NT$
199.0
《
剑桥斯堪的纳维亚戏剧史(剑桥世界戏剧史译丛)
》
售價:NT$
704.0
《
禅心与箭术:过松弛而有力的生活(乔布斯精神导师、世界禅者——铃木大拙荐)
》
售價:NT$
301.0
《
先进电磁屏蔽材料——基础、性能与应用
》
售價:NT$
1010.0
《
可转债投资实战
》
售價:NT$
454.0
《
王氏之死(新版,史景迁成名作)
》
售價:NT$
250.0
《
敢为天下先:三年建成港科大
》
售價:NT$
352.0
《
直观的经营:哲学视野下的动态管理
》
售價:NT$
407.0
|
內容簡介: |
本书为数据驱动的轴承智能化故障检测、故障诊断和剩余寿命预测提供了较为完整的机器学习解决方案。第1章介绍了轴承健康预警与故障预测的意义、发展趋势、国内外研究现状和关键挑战;第2章介绍了常用的机器学习理论基础;第3~5章介绍了故障诊断方法,分别采用深度学习、不均衡分类、结构化学习、在线学习等机器学习算法形式;第6章和第7章介绍了早期故障的在线检测问题,分别采用半监督学习、深度学习和迁移学习等机器学习算法形式;第8章和第9章介绍了剩余寿命预测问题,着重介绍了时序深度学习和迁移学习的解决方案。
本书可作为计算机、自动控制、机械工程、工业工程等学科的研究生和本科生的教学用书及参考用书,同时对从事系统维护、可靠性管理、智能制造等领域的科研人员及工程技术人员具有一定的参考价值。
本书为数据驱动的轴承智能化故障检测、故障诊断和剩余寿命预测提供了较为完整的机器学习解决方案。第1章介绍了轴承健康预警与故障预测的意义、发展趋势、国内外研究现状和关键挑战;第2章介绍了常用的机器学习理论基础;第3~5章介绍了故障诊断方法,分别采用深度学习、不均衡分类、结构化学习、在线学习等机器学习算法形式;第6章和第7章介绍了早期故障的在线检测问题,分别采用半监督学习、深度学习和迁移学习等机器学习算法形式;第8章和第9章介绍了剩余寿命预测问题,着重介绍了时序深度学习和迁移学习的解决方案。
本书可作为计算机、自动控制、机械工程、工业工程等学科的研究生和本科生的教学用书及参考用书,同时对从事系统维护、可靠性管理、智能制造等领域的科研人员及工程技术人员具有一定的参考价值。
|
關於作者: |
毛文涛,教授,工学博士,硕士生导师,主要研究方向为机器学习、智能故障诊断和预测。河南省高校科技创新人才、河南省高校青年骨干教师。主要研究工作集中在机器学习理论及其在旋转机械健康管理领域的应用。主持国家自然科学基金2项、各类省部级项目1 0余项。获河南省高等教育教学成果奖二等奖、自然科学优秀论文奖一等奖、西安交通大学优秀博士学位论文奖等多项奖励。2016年以来,在MssP、IEEETsMcB、IEEE TIM、《自动化学报》、《控制与决策》等国内外权威学术期刊和会议发表学术论文50余篇,其中EsI热点论文1篇,EsI高被引论文5篇
|
目錄:
|
第1章 绪论
1.1 引言
1.1.1 国家与社会的巨大需求
1.1.2 智能健康预警与故障预测的重要作用
1.1.3 机器学习的重要作用
1.2 轴承早期故障检测方法研究现状
1.3 轴承故障诊断方法研究现状
1.4 轴承剩余寿命方法研究现状
1.5 轴承智能健康预警与故障预测面临的挑战
1.6 数据集介绍
参考文献
第2章 机器学习理论基础
2.1 浅层学习模型
2.1.1 感知机
2.1.2 决策树
2.1.3 Logistic回归
2.1.4 支持向量机
2.1.5 朴素贝叶斯算法
2.1.6 支持向量数据描述
2.2 深度学习模型
2.2.1 传统神经网络模型
2.2.2 卷积神经网络
2.2.3 自编码神经网络
2.2.4 深度置信网络
2.2.5 循环神经网络
2.2.6 长短时记忆网络
2.2.7 生成对抗网络
2.3 本章小结
参考文献
第3章 故障特征表示与诊断模型构建
3.1 基于浅层模型的故障诊断
3.1.1 异构故障特征表示
3.1.2 故障诊断模型构建
3.2 基于深度神经网络的故障诊断方法
3.2.1 极限学习机自编码器
3.2.2 滚动轴承的深度特征提取方法
3.2.3 实验结果
3.3 基于生成对抗网络的故障样本合成与诊断
3.3.1 不均衡类别的故障诊断
3.3.2 基于GAN和SDAE模型的不均衡故障诊断
3.3.3 实验结果
3.4 本章小结
参考文献
第4章 结构化学习与多故障状态诊断
4.1 基于结构化特征选择的故障诊断方法
4.1.1 引言
4.1.2 基于特征相关性的结构化特征选择算法
4.1.3 模型求解
4.1.4 实验结果
4.2 基于深度输出核学习的多故障状态诊断
4.2.1 引言
4.2.2 深度输出核网络模型
4.2.3 实验设置
4.2.4 实验结果
4.3 基于结构化深度自编码器的多故障状态诊断
4.3.1 结构化自编码器模型构建
4.3.2 目标函数求解
4.3.3 实验结果分析
4.4 本章小结
参考文献
第5章 在线学习与在线故障诊断
5.1 基于极限学习机的在线不均衡故障诊断
5.1.1 引言
5.1.2 基于粒划分的在线不均衡分类
5.1.3 可靠性理论分析
5.1.4 实验结果分析
5.2 基于增量支持向量机和深度特征表示的在线故障诊断
5.2.1 增量模型构建
5.2.2 实验结果
5.3 本章小结
参考文献
第6章 深度学习与早期故障在线检测
6.1 基于半监督框架和深度特征表示的早期故障在线检测
6.1.1 引言
6.1.2 深度特征表示与模型更新
6.1.3 早期故障指标构建
6.1.4 性能分析
6.1.5 对比实验结果
6.2 基于深度特征自适应匹配的早期故障在线检测
6.2.1 引言
6.2.2 离线深度特征建模
6.2.3 在线自适应特征匹配
6.2.4 实验结果分析
6.2.5 实验验证
6.3 本章小结
参考文献
第7章 深度迁移学习与早期故障在线检测
7.1 基于振动信号可视化迁移的早期故障在线检测
7.1.1 数据处理
7.1.2 深度迁移特征提取模型的构建
7.1.3 检测模型构建
7.1.4 实验结果
7.2 基于多域迁移深度自编码网络的早期故障在线检测
7.2.1 多域迁移深度自编码网络
7.2.2 异常检测模型
7.2.3 实验结果
7.3 本章小结
参考文献
第8章 深度学习与轴承剩余寿命预测
8.1 基于深度特征表示和长短时记忆网络的RUL预测
8.1.1 轴承健康状态划分方法
8.1.2 轴承退化过程深度特征表示
8.1.3 故障阈值与剩余寿命确定
8.1.4 基于LSTM网络的预测模型
8.2 实验设置
8.2.1 信号预处理
8.2.2 状态划分和深度特征表示
8.2.3 剩余寿命确定结果
8.3 实验结果
8.4 本章小结
参考文献
第9章 迁移学习与跨工况剩余寿命预测
9.1 RUL迁移学习预测的问题描述
9.2 基于深度特征表示和迁移学习的轴承剩余寿命预测方法
9.2.1 信号预处理和深度特征提取
9.2.2 轴承退化状态划分方法
9.2.3 基于深度特征的迁移成分分析
9.2.4 实验结果
9.3 基于深度时序特征迁移的轴承剩余寿命预测方法
9.3.1 基于深度时序特征的健康指标构建
9.3.2 面向序列迁移的领域自适应
9.3.3 基于迁移回归模型的轴承剩余寿命预测方法
9.3.4 实验结果
9.4 本章小结
参考文献
|
內容試閱:
|
国务院在2015年印发了《中国制造2025》,智能制造被确定为下一个国家重点发展的领域。通过分析和利用机械设备的各种状态信号进行智能化运行状态监测及健康维护,已经成为实现智能制造的迫切需求之一。作为机械设备中重要但易发生损坏的支承元件,滚动轴承的健康状况直接影响整个设备的运转状态。开展针对滚动轴承的故障预测与健康管理(prognosticsandhealthmanagement,PHM)理论与方法研究,对消除机械设备安全隐患、预防重大事故发生具有重要价值。当前,在工程现场实时进行早期故障预警与状态预测的重要性日益突出,但针对滚动轴承等关键零部件的在线辨识、诊断和预测技术还不能完全满足装备制造业发展的需要。因此,研究和发展服役过程中高度智能化、不受工况限制的健康预警与寿命预测方法已成为当前轴承PHM研究的重点和难点。
在过去的十余年中,利用机器学习(machinelearning)方法解决轴承健康预警和寿命预测问题已成为国内外研究的热点。但是,这一方向既存在大量需求和机遇,也有亟待解决的大量问题。虽然各类机器学习技术已在轴承故障诊断与剩余寿命预测等问题上取得了一定的效果,但随着对象结构趋于复杂,运行工况多变,新的应用问题类型也开始出现,如在线场景下的故障诊断和检测、跨工况的生命预测等。这种情况下,直接应用传统机器学习技术效果难以保证,需要根据应用问题的特点,有针对性地改进现有算法模型,引入不同类型的机器学习算法。尤其是近几年兴起的深度学习技术,为轴承PHM问题提供了新的解决方式,但在数据处理、建模方式、适用范围等方面仍处于起步和探索阶段。鉴于此,作者将近年的研究工作汇集,对相关机器学习技术在轴承PHM问题中的应用进行梳理和剖析,为实现轴承智能状态监控和健康管理提供一系列解决方案。
本书的研究内容集中于机器学习理论与轴承PHM问题的结合,以三类典型轴承PHM问题故障诊断、早期故障检测和剩余寿命预测问题为引导,从数据驱动的角度提高工程应用效果,系统讲述轴承故障诊断和剩余寿命预测中的机器学习技术,给出具体的实现思路、建模过程和实验验证结果,重点围绕在线故障诊断、早期故障在线检测、多类型协同诊断、跨工况故障检测和剩余寿命预测等新型PHM应用问题展开论述。本书内容既包括特征选择、不均衡分类、半监督学习等传统机器学习算法的改进,也包括深度学习、迁移学习、结构化学习等最新理论工作;不仅有现有机器学习算法的应用研究,也有针对具体问题特点的理论改进;不仅涉及基础机器学习算法的应用,也有深度迁移学习、生成对抗网络(generativeadversarialnetworks,GAN)等最新技术的应用;不仅提供了具体技术的使用说明,也包括了作者研究思路、方案和技术路线的叙述;不仅有详细的公式推导和文字描述,也给出了丰富的实验结果和对比效果图。
本书以机器学习方法 典型PHM问题为模式进行章节组织,每一章讲述一类典型PHM问题的机器学习方案。第1章综述了轴承智能故障诊断、早期故障检测和剩余寿命预测的发展现状及关键挑战,并给出了本书实验所用数据的详细介绍。第2章介绍了机器学习的基本理论、算法和模型。第3~5章为故障诊断问题,其中第3章介绍了在轴承故障诊断和剩余寿命预测问题中常用的异构统计特征,并以深度特征表示为主线,给出了两种深度学习算法在故障诊断应用中的实现过程;第4章介绍了结构化学习算法在多故障类型诊断问题中的应用;第5章介绍了在线场景下故障诊断问题的解决方案。第6章和第7章为早期故障检测问题,其中第6章介绍了早期故障在线检测问题的半监督检测框架和稳健检测方法;第7章介绍了深度迁移学习在早期故障在线检测中的应用。第8章和第9章为剩余寿命预测问题,其中第8章介绍了时序深度学习模型在剩余寿命预测中的应用,第9章介绍了跨工况情况下剩余寿命预测的迁移学习解决方案。
本书所涉及研究成果得到了众多科研机构的支持,其中特别感谢国家自然科学基金项目基于多任务学习的机械结构小损伤检测方法研究(编号:U1704158)和青年科学基金项目半无限域多孔介质弹性波动问题的时域边界元法及其稳定性研究(编号:11702087),中国博士后科学基金特别资助项目面向结构小损伤检测的不对称多任务学习研究(编号:2016T90944)。研究生何玲、何建樑、冯务实、田思雨、丁玲、刘亚敏等针对本书中的故障诊断、早期故障检测及剩余寿命预测方法分别做了一定的科研工作,在本书出版之际,谨向他们表示衷心的感谢。
由于作者理论水平有限,对应用问题的理解尚存在一定的局限,特别是深度学习理论和轴承健康管理方法本身均处于快速发展中,本书难免存在一些不足,恳请广大读者批评指正。
毛文涛
2020年10月15日
|
|