登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』深海载人潜水器的蛋形耐压壳研究(全英文)=RESEARCH ON EGG-SHAPED PRESSURE HULLS OF DEEP MANNED SUBMERSIBLES

書城自編碼: 3580841
分類: 簡體書→大陸圖書→工業技術汽車/交通運輸
作者: 张建,吴文伟,唐文献,王纬波
國際書號(ISBN): 9787547847657
出版社: 上海科学技术出版社
出版日期: 2020-12-01

頁數/字數: /
書度/開本: 16开 釘裝: 精装

售價:NT$ 1140

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
知宋·宋代之科举
《 知宋·宋代之科举 》

售價:NT$ 454.0
那本书是(吉竹伸介与又吉直树 天才联动!)
《 那本书是(吉竹伸介与又吉直树 天才联动!) 》

售價:NT$ 454.0
传播的跃迁:人工智能如何革新人类的交流
《 传播的跃迁:人工智能如何革新人类的交流 》

售價:NT$ 505.0
纯粹·古代中国的历史与制度
《 纯粹·古代中国的历史与制度 》

售價:NT$ 286.0
生活来来往往  别等来日方长 新版(伍佰:“讲好了这一辈子,再度重相逢。”别等,别遗憾!珍惜当下才是最好的解药)
《 生活来来往往 别等来日方长 新版(伍佰:“讲好了这一辈子,再度重相逢。”别等,别遗憾!珍惜当下才是最好的解药) 》

售價:NT$ 265.0
一个英国军事顾问眼中的二战
《 一个英国军事顾问眼中的二战 》

售價:NT$ 1265.0
就业、利息和货币通论(徐毓枬译本)(经济学名著译丛)
《 就业、利息和货币通论(徐毓枬译本)(经济学名著译丛) 》

售價:NT$ 306.0
瘦肝
《 瘦肝 》

售價:NT$ 454.0

編輯推薦:
本书系统开展了蛋形耐压壳仿生及抗压能力方面的基础研究工作,获得国家科学技术学术著作出版基金资助目前国内外出版关于深海潜水器耐压壳方面的著作,均针对球形结构进行研究,本书则针对球形固有缺点,提出一种新型结构蛋形耐压壳替代球形耐压壳,发明了单一蛋形结构、蛋形仿生封头及多蛋型耐压壳结构,内容系统完整、理论创新明显、技术实用性强。
本书是国内外目前非常规异形深海耐压壳研究方面的*专著,为了推动全球深海载人装备基础研究发展、拓展国内外相关读者群体、让国际同行了解该项研究成果,特采用英文撰写。
內容簡介:
本专著面向深海科技发展急需、重大专项和技术领先方向,紧密围绕深海耐压壳装备设计理论与应用技术这个核心主题,针对现有球形结构存在缺陷敏感性高、水动力学特性差、壳内空间利用率低等问题,提出一种新型结构蛋形耐压壳替代球形耐压壳,从生物学、应用力学、海洋工程学和仿生学角度,全面阐述了深海蛋形耐压壳、蛋形仿生封头、多蛋交接耐压壳研究的*成果。专著内容系统完整,理论创新性明显,技术实用性强,可以直接指导生产实践。专著的出版对全面提升我国深海工程装备自主研发能力具有重要实践意义,也为中国深海耐压装备产业创新发展提供参考和支撑。
關於作者:
张建,双博士,副教授,江苏省优青,江苏省333工程第三层次,江苏省六大人才高峰人选,江苏省双创计划人才,江苏省科协青年人才托举对象,镇江市有突出贡献的中青年专家,中国船舶科学研究中心博士后。获江苏大学车辆工程博士学位、日本埼玉工业大学机械工程博士学位。
主要从事深海工程装备基础理论研究及复杂机电产品数字化开发。第一或通讯发表SCI收录论文 20篇(ESI高被引1篇)。第一发明人获发明专利39件(美国2件、俄罗斯1件)。作为项目主要完成人获江苏省科技进步二等奖1项(排名3)、三等奖2项(排名3),教育部科技进步二等奖2项(排名3、5),江苏省发明专利优秀奖1项(排名2)。指导研究生获江苏省优秀硕士论文1部。
目錄
Chapter 1Introduction1
1.1Background and significance1
1.2Overview of research status4
1.2.1Externally pressurized spherical shells4
1.2.2Externally pressurized untypical shells5
1.2.3Externally pressurized domed heads5
1.2.4Shell buckling research approaches6
1.2.5Externally pressurized multisegment shells7
1.3Problems and solution8
1.4Structure of the monograph10
References12
Chapter 2Buckling of deep sea spherical pressure hulls18
2.1Buckling analysis of geometrically perfect and imperfect hulls19
2.1.1Geometry and material19
2.1.2Buckling of geometrically perfect hulls20
2.1.3Buckling of geometrically imperfect hulls23
2.2Effect of yield strength on the buckling of hulls26
2.2.1Perfect geometry analysis27
2.2.2Imperfect geometry analysis28
2.3Experimental methodology of spherical shells34
2.3.1Shell manufacturing and testing34
2.3.2Material properties38
2.4Buckling analysis of spherical shells39
2.4.1Experimental and analytical results 40
2.4.2Comparison between experimental and numerical results42
2.4.3Effect of constitutive models45
2.4.4Effect of geometrical imperfections46
2.5Summary49
References51
Chapter 3Bionic design of eggshape pressure hulls54
3.1Geometric properties of goose eggshells55
3.1.1Size of goose eggshells56
3.1.2Surface area and volume of goose eggshells58
3.1.3Symmetry of goose eggshells59
3.1.4Shape function of goose eggshells61
3.1.5Thickness of goose eggshells62
3.2Load carrying capacities of goose eggshells63
3.2.1Experimental results of goose eggshells67
3.2.2Numerical results of goose eggshells71
3.2.3Comparison between experimental and numerical data73
3.3Configuration and size eggshaped pressure hulls75
3.4Strength, stability, and buoyancy of eggshaped pressure hull77
3.4.1Strength and stability of eggshaped pressure hull77
3.4.2Uniform wall thickness analysis of eggshaped pressure
hulls78
3.4.3Nonuniform wall thickness analysis of eggshaped pressure
hulls80
3.4.4Spherical pressure hulls analysis81
3.5Analytical results of eggshaped and spherical pressure hulls82
3.6Numerical results of eggshaped and spherical pressure hulls85
3.7Evaluation and comparison of main properties for pressure hulls92
3.8Summary93
References95Chapter 4Effect of geometrical parameters on buckling of eggshaped pressure
hulls97
4.1Effect of shape index on buckling of eggshaped pressure hulls98
4.1.1Geometry of eggshaped pressure hulls98
4.1.2Capacity and mass of eggshaped pressure hull100
4.1.3Numerical modeling of eggshaped pressure hulls101
4.1.4Linear buckling of eggshaped pressure hulls102
4.1.5Nonlinear buckling of eggshaped pressure hulls104
4.2Effect of wall thickness on buckling of eggshaped pressure
hulls107
4.2.1Buckling of geometrically perfect eggshaped pressure
hulls107
4.2.2Buckling of geometrically imperfect eggshaped pressure
hulls111
4.2.3Comparison between eggshaped and spherical pressure
hulls113
4.3Buckling experimentation using CNCmachined eggshaped
shells116
4.3.1Experimental buckling of CNCmachined eggshaped
shells116
4.3.2Numerical buckling of CNCmachined eggshaped shells120
4.4Buckling experimentation using rapid prototyping eggshaped
shells 124
4.4.1Experimental buckling of rapid prototyping eggshaped
shells124
4.4.2Numerical buckling of rapid prototyping eggshaped
shells130
4.4.3Effects of imperfection shape and size on buckling of
eggshaped shells133
4.5Summary134
References136
Chapter 5Enhancement of eggshaped pressure hulls using nonuniform wall
thickness139
5.1Design and fabrication of eggshaped pressure hulls140
5.1.1Geometrical design140
5.1.2Sample fabrication141
5.2Measurement and test142
5.2.1Shape scanning of samples142
5.2.2Hydrostatic test of samples144
5.2.3Tensile tests of material147
5.3Experimental analysis of eggshaped pressure hulls148
5.4Numerical analysis of eggshaped pressure hulls150
5.5Summary153
References154
Chapter 6Collapse modes and ultimate strengths of eggshaped shells with
corrosion thinning157
6.1Problem definition158
6.2Numerical analysis of eggshaped shells with corrosion thinning160
6.2.1Collapse mechanism analysis162
6.2.2Ultimate strength analysis163
6.3Experimental analysis of eggshaped shells with corrosion
thinning165
6.3.1Fabrication and measurement of samples166
6.3.2Externally hydrostatic test of samples169
6.3.3Numerical analysis of fabricated eggshaped shells172
6.4Summary174
References175
Chapter 7Buckling of prolate eggshaped domes under external pressure179
7.1Geometrical and physical properties of eggshaped domes180
7.1.1Geometry of eggshaped domes180
7.1.2Capacity and mass of eggshaped domes182
7.2Manufacture, measurement and test of eggshaped domes183
7.2.1Overview of the manufacturing process183
7.2.2Pretest measurements183
7.2.3Collapse tests185
7.2.4Parent material properties186
7.3Experimental analysis of experimental eggshaped domes187
7.4Numerical analysis and verification of manufactured eggshaped
domes187
7.5Buckling of a perfect eggshaped dome190
7.6Summary194
References195
Chapter 8Buckling of multisegment eggshaped pressure hulls197
8.1Geometry of the multisegment eggshaped pressure hull198
8.2Design of rib rings199
8.2.1Analytical prebuckling analysis of the eggshaped pressure
hull200
8.2.2Inner radii of rib rings201
8.3Numerical result and discussions202
8.3.1Prebuckling state203
8.3.2Buckling state205
8.3.3Postbuckling state207
8.3.4Verification of numerical approach211
8.4Summary214
References215
內容試閱
The deep sea manned submersible plays an important role in oceanic exploration and deepsea research, which demonstrates the frontier and height of ocean science and technology. The pressure hull is an important external pressure vessel and a buoyancy unit of submersible, which provides a safe living and working space for crews and some nonpressure resistingnonwater repellent equipment.
The spherical pressure hull is the most extensively used configuration due to equally distributed stress and deformation. However, it has disadvantages of highly geometrical imperfection sensitivity, irrational hydrodynamics, and inefficient space utilization. In order to overcome these disadvantages, the authors put forward a new geometry, an eggshaped pressure hull, to take place of the spherical pressure hull. In this case, bionics on eggshaped pressure hulls and their buckling properties are proposed in this monograph.
The monograph contains the following seven chapters:
Chapter 1 briefly introduces background, significance, research status, existing problems and corresponding solutions, and structure of the monograph.
Chapter 2 focuses on the buckling of spherical pressure hulls under various geometric and material parameters, along with laboratory scale experimentation.
Chapter 3 is devoted to the bionic design of eggshaped pressure hulls and an equivalent comparison between eggshaped and spherical configurations.
Chapter 4 evaluates the effect of wall thickness and geometrical shape on the linear and nonlinear buckling of pressure hulls, along with experimentation.
Chapter 5 is dedicated to eggshaped pressure hulls with nonuniform wall thickness and the corresponding experimentation.
Chapter 6 concentrated on the collapse modes and ultimate strengths of externally pressurized eggshaped shells with corrosion thinning.
Chapter 7 investigated the buckling of nontypical prolate domes subject to hydrostatic external pressure.
Chapter 8 is devoted to a multisegment eggshaped pressure hull based on the geometric properties of goose eggs.
This monograph is intended for the professional researchers, teachers, and students whose research interest involves the mechanics of pressure vessels in civil, aero, and ocean engineering, as well as the corresponding technological staffs.
The authors would like to express the deep gratitude to Professor Xilu Zhao, Professor Weicheng Cui, associate Professor Fang Wang, Professor Katsuyuki Konishi, Professor Yohichi Kohzuki, Professor Yoshio Fukushima, and associate Professor Alan Hase. Their critical and constructive advice significantly improved the whole research. Also, the authors were obliged to his diligent master students such as Minglu Wang, Xinlong Zuo, Meng Zhang, Yueyang Wang, Zhengdao Hua, Shengqiu Li, Jiawei Tan, and so forth. Their hard works considerably push forward the research process.
This work was supported by the National Natural Science Foundation of China [grant number 51709132], the Natural Science Foundation of Jiangsu Province [grant number BK20150469], and the Jiangsu Provincial Government Scholarship Programme. Also, the authors would appreciate the experimental support from Shanghai Engineering Research Center of Hadal Science and Technology, Chinese Ship Scientific Research Center, and Jiangsu Provincial Key Laboratory of Advanced Manufacture and Process for Marine Mechanical Equipment.
Zhang Jian

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.