登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2025年01月出版新書

2024年12月出版新書

2024年11月出版新書

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

『簡體書』网络舆情中的的热点话题研究

書城自編碼: 3560337
分類: 簡體書→大陸圖書→社會科學新闻传播出版
作者: 吴树芳,朱杰
國際書號(ISBN): 9787030661944
出版社: 科学出版社
出版日期: 2020-10-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:NT$ 594

我要買

share:

** 我創建的書架 **
未登入.



內容簡介:
热点话题研究属于网络舆情的研究范畴,对热点话题的研究可以帮助个人、企业和政府及时发现网络中的热点讨论,并对其进行合理有效的引导,有助于营造健康的网络环境。《网络舆情中的热点话题研究》以基于贝叶斯理论的信念网络话题模型作为表示模型,对网络舆情中的热点话题展开系列研究,具体包括:融合上下文信息的热点话题字典构建、融合时序性和波动性的热点话题发现、热点话题演化中的噪声特征识别、热点话题的参与者—意见领袖特征分析和基于集成思想的热点话题推荐,并分别对上述研究内容的有效性进行了实验验证。
目錄
目 录
前言
第1 章 网络舆情 1
1.1 网络舆情概述 3
1.1.1 相关概念 3
1.1.2 表现形式 3
1.1.3 网络舆情的特点 5
1.1.4 网络舆情的分类 8
1.2 网络舆情的管理 9
1.2.1 网络舆情管理的界定 10
1.2.2 网络舆情管理的意义 11
1.2.3 网络舆情管理的措施 12
1.3 网络舆情的数据分析 15
1.3.1 网络舆情数据分析概述 15
1.3.2 网络舆情数据分析步骤 15
1.3.3 网络舆情数据分析方法 19
1.4 网络舆情的传播 19
1.4.1 网络舆情传播的载体 20
1.4.2 网络舆情传播的要素 22
1.4.3 网络舆情的传播特征 23
1.4.4 网络舆情的传播阶段 25
1.4.5 网络舆情的传播模式 27
1.5 网络舆情的监测 29
1.5.1 网络舆情监测的意义 31
1.5.2 网络舆情监测模型 31
1.5.3 网络舆情监测相关技术 32
1.6 网络舆情的预警 33
1.6.1 网络舆情预警的内容 33
1.6.2 网络舆情预警的等级 34
1.6.3 舆情不同传播阶段的预警重点 34
1.6.4 网络舆情预警指标构建 35
1.7 本章小结 36
第2 章 话题识别与追踪 37
2.1 话题识别与追踪研究前沿及发展历程 37
2.1.1 研究前沿 37
2.1.2 发展历程 41
2.2 话题识别与追踪的相关概念 43
2.3 话题识别与追踪的任务 43
2.3.1 报道切分 44
2.3.2 话题识别 44
2.3.3 话题追踪 45
2.3.4 首报道识别 45
2.3.5 关联检测 45
2.4 话题识别与追踪的评价指标 45
2.4.1 识别评价指标 45
2.4.2 识别错误权衡曲线DET 曲线 46
2.5 话题识别与追踪的测试集合 48
2.6 本章小结 54
第3 章 基于贝叶斯网络的话题识别与追踪55
3.1 贝叶斯网络简介 55
3.2 贝叶斯网络基础 56
3.3 贝叶斯网络的拓扑结构及概率推导 58
3.3.1 贝叶斯网络的拓扑结构 58
3.3.2 概率推导 59
3.3.3 动态贝叶斯网络 59
3.4 贝叶斯网络的推理 61
3.5 贝叶斯网络与因果分析 62
3.6 贝叶斯网络在话题识别与追踪中的应用 62
3.6.1 基于朴素贝叶斯理论的话题识别与追踪 64
3.6.2 基于信念网络的话题识别与追踪 65
3.7 本章小结 71
第4 章 基于上下文信息的话题字典的构建73
4.1 话题特征选择 73
4.1.1 基本理论 74
4.1.2 基于增量式TF-IDF 的话题特征选择 77
4.1.3 基于聚类和时间因素的话题特征选择 77
4.2 上下文信息 79
4.3 融合上下文信息的话题字典生成 81
4.4 实验与分析 85
4.5 本章小结 88
第5 章 融合时序性和波动性的热点话题发现 89
5.1 热点话题发现研究的意义 89
5.2 代表性热点话题发现研究 89
5.3 新闻话题的时序性和波动性简述 97
5.4 基于时序性和波动性的话题热度计算 98
5.4.1 基于时序的相关报道密度计算 98
5.4.2 基于波动性的峰值计算 99
5.4.3 话题热度计算 99
5.5 实验结果及分析 99
5.6 本章小结 101
第6 章 面向热点话题演化的噪声特征识别 103
6.1 话题演化概述 103
6.2 话题演化相关研究 104
6.3 话题演化与话题漂移关系概述 109
6.4 话题演化中噪声引入分析 110
6.5 噪声特征权重衰减及识别 111
6.5.1 特征的间断性和分布性量化 112
6.5.2 噪声特征权重衰减 112
6.5.3 噪声特征识别 114
6.6 实证研究 115
6.7 本章小结 117
第7 章 热点话题的参与者意见领袖特征分析 118
7.1 理论基础 118
7.1.1 意见领袖 118
7.1.2 社会网络分析法 119
7.2 数据获取 121
7.3 热点话题意见领袖识别 122
7.3.1 网络密度分析 123
7.3.2 网络中心性分析 123
7.3.3 话题意见领袖识别 125
7.4 意见领袖特征分析 126
7.5 本章小结 131
第8 章 网络舆情中的热点话题推荐 132
8.1 个性化推荐相关研究 132
8.2 个性化推荐概述 134
8.2.1 个性化推荐的关键问题 134
8.2.2 个性化推荐方法 135
8.2.3 个性化推荐的评价指标 137
8.3 集成算法 139
8.3.1 Bagging 140
8.3.2 Boosting 140
8.3.3 Stacking 141
8.4 基于Stacking 集成的热点话题推荐 142
8.5 实证研究 144
8.6 本章小结 147
参考文献 148
后记 158

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2025 (香港)大書城有限公司 All Rights Reserved.