登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

2023年08月出版新書

2023年07月出版新書

2023年06月出版新書

2023年05月出版新書

2023年04月出版新書

2023年03月出版新書

2023年02月出版新書

『簡體書』岩石材料尺度效应及破断结构效应(Scale-Size and Structural Effects of Rock Materials)

書城自編碼: 3539662
分類: 簡體書→大陸圖書→工業技術一般工业技术
作者: 王树仁[Shuren,Wang][澳]侯赛因·麦苏米[Hos
國際書號(ISBN): 9787302559320
出版社: 清华大学出版社
出版日期: 2020-08-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:NT$ 1008

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
状态比能力更重要:108个状态调整法
《 状态比能力更重要:108个状态调整法 》

售價:NT$ 308.0
中国上市公司担保行为的影响因素及其效应研究
《 中国上市公司担保行为的影响因素及其效应研究 》

售價:NT$ 202.0
企业级数据架构:核心要素、架构模型、数据管理与平台搭建    李杨
《 企业级数据架构:核心要素、架构模型、数据管理与平台搭建 李杨 》

售價:NT$ 554.0
政和元年:宋辽金夏的国运博弈与谍战风云
《 政和元年:宋辽金夏的国运博弈与谍战风云 》

售價:NT$ 381.0
黄金圈法则
《 黄金圈法则 》

售價:NT$ 437.0
全球治理理论:权威、合法性与论争
《 全球治理理论:权威、合法性与论争 》

售價:NT$ 549.0
华尔街幽灵:一位股票投资大师的告白
《 华尔街幽灵:一位股票投资大师的告白 》

售價:NT$ 447.0
人生幸好有快乐(一代大师梁实秋至诚分享八十余年的快乐哲学!)
《 人生幸好有快乐(一代大师梁实秋至诚分享八十余年的快乐哲学!) 》

售價:NT$ 302.0

編輯推薦:
本书内容新颖、丰富、实用,可供从事岩石参数测试、岩体力学试验、岩土工程和地下工程实践的科研工作者、高校师生以及现场工程技术人员参考和借鉴
內容簡介:
本书总结了作者近年来关于岩石力学基础理论、试验方法以及创新技术和工程应用的*研究成果。全书分岩石试验尺度效应、岩石断裂韧度确定、岩石节理尺度效应、微震监测及应用、工程岩体结构效应5章,主要阐述了国内外关于岩石材料断裂过程的尺度效应和结构效应的试验技术、强度准则、微震监测及工程应用、工程岩体结构失稳机制及控制技术等内容,附有大量的图表和工程实例。本书内容丰富、新颖、实用,可为从事隧道工程、岩土工程、采矿工程以及岩石力学的科研工作者、高等院校师生以及现场工程技术人员提供参考和借鉴。
關於作者:
王树仁 博士,教授,主要从事岩土工程、岩石力学、采矿工程和数值模拟计算等方面的科研与教学工作。
主持及完成国家自然科学基金项目51774112;51474188; 51074140; 51310105020、河北省自然科学基金项目E2014203012、河北省科技支撑项目072756183和河南省科技厅国际合作项目162102410027; 182102410060等。基于上述研究,荣获国家科技进步二等奖1项,省部级二等奖5项,军队及省部级科技进步三等奖3项。荣获2015年澳大利亚政府资助奋进研究学者,现为河南省特聘教授和澳大利亚新南威尔士大学兼职教授。
目錄
Contributors WJJ
About the authors JY
Preface YJ
Acknowledgments YJJJ
Size effect of rock samples 1
Hossein Masoumi
1.1 Size effect law for intact rock 2
1.1.1 Introduction 2
1.1.2 Background 3
1.1.3 Experimental study 9
1.1.4 Unified size effect law 19
1.1.5 Reverse size effects in UCS results 24
1.1.6 Contact area in size effects of point load results 28
1.1.7 Conclusions 34
1.2 Length-to-diameter ratio on point load strength index 35
1.2.1 Introduction 35
1.2.2 Background 36
1.2.3 Methodology 38
1.2.4 Valid and invalid failure modes 39
1.2.5 Conventional point load strength index size effect 42
1.2.6 Size effect of point load strength index 44
1.2.7 Conclusions 49
1.3 Plasticity model for size-dependent behavior 51
1.3.1 Introduction 51
1.3.2 Notation and unified size effect law 53
1.3.3 Bounding surface plasticity 55
1.3.4 Model ingredients 57
1.3.5 Model calibration 65
1.3.6 Conclusions 74
1.4 Scale-size dependency of intact rock 77
1.4.1 Introduction 77
1.4.2 Rock types 78
1.4.3 Experimental procedure 80
1.4.4 Comparative study 91
1.4.5 Conclusion 103
1.5 Scale effect into multiaxial failure criterion 103
1.5.1 Introduction 103
1.5.2 Background 106
J
JJ Contents
1.5.3 Scale and Weibull statistics into strength measurements 107
1.5.4 The modified failure criteria 111
1.5.5 Comparison with experimental data 117
1.5.6 Conclusions 121
1.6 Size-dependent Hoek-Brown failure criterion 121
1.6.1 Introduction 121
1.6.2 Background 122
1.6.3 Size-dependent Hoek-Brown failure criterion 126
1.6.4 Example of application 136
1.6.5 Conclusions 137
References 137
Further reading 144

Rock fracture toughness 145
Sheng Zhang
2.1 Fracture toughness of splitting disc specimens 146
2.1.1 Introduction 146
2.1.2 Preparation of disc specimens 147
2.1.3 Fracture toughness of five types of specimens 148
2.1.4 Load-displacement curve of disc splitting test 153
2.1.5 Comparison of disc splitting test results 155
2.1.6 Conclusions 158
2.2 Fracture toughness of HCFBD 159
2.2.1 Introduction 159
2.2.2 Test method and principle 160
2.2.3 HCFBD specimens with prefabricated cracks 162
2.2.4 Calibration of maximum dimensionless SIF Ymax 163
2.2.5 Results and analysis 164
2.2.6 Conclusions 168
2.3 Crack length on dynamic fracture toughness 169
2.3.1 Introduction 169
2.3.2 Dynamic impact splitting test 169
2.3.3 Results and discussion 171
2.3.4 DFT irrespective of configuration and size 175
2.3.5 Conclusions 176
2.4 Crack width on fracture toughness 177
2.4.1 Introduction 177
2.4.2 NSCB three-point flexural test 178
2.4.3 Width influence on prefabricated crack 180
2.4.4 Width influence of cracks on tested fracture toughness 183
2.4.5 Method for eliminating influence of crack width 185
2.4.6 Conclusions 187
2.5 Loading rate effect of fracture toughness 188
2.5.1 Introduction 188
2.5.2 Specimen preparation 189
2.5.3 Test process and data processing 189
Contents JJJ
2.5.4 Results and analysis 191
2.5.5 Conclusions 204
2.6 Hole influence on dynamic fracture toughness 204
2.6.1 Introduction 204
2.6.2 Dynamic cleaving specimens and equipment 205
2.6.3 SHPB test and data record 207
2.6.4 Dynamic finite element analysis 210
2.6.5 Results analysis and discussion 212
2.6.6 Conclusions 217
2.7 Dynamic fracture toughness of holed-cracked discs 217
2.7.1 Introduction 217
2.7.2 Dynamic fracture toughness test 219
2.7.3 Experimental recordings and results 221
2.7.4 Dynamic stress intensity factor in spatial-temporal
domain 226
2.7.5 Conclusions 231
2.8 Dynamic fracture propagation toughness of P-CCNBD 231
2.8.1 Introduction 231
2.8.2 Experimental preparation 233
2.8.3 Experimental recording and data processing 237
2.8.4 Numerical calculation of dynamic stress intensity factor 242
2.8.5 Determine dynamic fracture toughness 247
2.8.6 Conclusions 253
References 254
Further reading 258

Scale effect of the rock joint 259
Joung Oh
3.1 Fractal scale effect of opened joints 260
3.1.1 Introduction 260
3.1.2 Scale effect based on fractal method 262
3.1.3 Constitutive model for opened rock joints 266
3.1.4 Validation of proposed scaling relationships 268
3.1.5 Conclusions 272
3.2 Joint constitutive model for multiscale asperity degradation 274
3.2.1 Introduction 274
3.2.2 Quantification of irregular joint profile 275
3.2.3 Description of proposed model 277
3.2.4 Joint model validation 281
3.2.5 Conclusions 288
3.3 Shear model incorporating small- and large-scale irregularities 290
3.3.1 Introduction 290
3.3.2 Constitutive model for small-scale joints 291
3.3.3 Constitutive model for large-scale joints 294
3.3.4 Correlation with experimental data 299
3.3.5 Conclusions 308
JW Contents
3.4 Opening effect on joint shear behavior 309
3.4.1 Introduction 309
3.4.2 Constitutive model for joint opening effect 310
3.4.3 Opening model performance 312
3.4.4 Discussion 317
3.4.5 Conclusions 318
3.5 Dilation of saw-toothed rock joint 318
3.5.1 Introduction 318
3.5.2 Constitutive law for contacts in DEM 320
3.5.3 Model calibration 320
3.5.4 Direct shear test simulation 323
3.5.5 Conclusions 333
3.6 Joint mechanical behavior with opening values 334
3.6.1 Introduction 334
3.6.2 Normal deformation of opened joints 337
3.6.3 Direct shear tests 350
3.6.4 Results analysis and discussion 351
3.6.5 Conclusions 356
3.7 Joint constitutive model correlation with field observations 357
3.7.1 Introduction 357
3.7.2 Model description and implementation 358
3.7.3 Stability analysis of large-scale rock structures 365
3.7.4 Conclusions 385
References 390
Further reading 397

Microseismic monitoring and application 399
Shuren Wang and Xiangxin Liu
4.1 Acoustic emission of rock plate instability 400
4.1.1 Introduction 400
4.1.2 Materials and methods 401
4.1.3 Results analysis 405
4.1.4 Discussion of the magnitudes of AE events 407
4.1.5 Conclusions 408
4.2 Prediction method of rockburst 409
4.2.1 Introduction 409
4.2.2 Microseismic monitoring system 410
4.2.3 Active microseismicity and faults 412
4.2.4 Rockburst prediction indicators 415
4.2.5 Conclusions 420
4.3 Near-fault mining-induced microseismic 420
4.3.1 Introduction 420
4.3.2 Engineering situations 422
4.3.3 Computational model 424
4.3.4 Result analysis and discussion 425
4.3.5 Conclusions 430
Contents W
4.4 Acoustic emission recognition of different rocks 432
4.4.1 Introduction 432
4.4.2 Experiment preparation and methods 434
4.4.3 Results and discussion 439
4.4.4 AE signal recognition using ANN 442
4.4.5 Conclusions 448
4.5 Acoustic emission in tunnels 448
4.5.1 Introduction 448
4.5.2 Rockburst experiments in a tunnel 450
4.5.3 Experimental results 453
4.5.4 AE characteristics of rockburst 458
4.5.5 Discussion 461
4.5.6 Conclusions 466
4.6 AE and infrared monitoring in tunnels 466
4.6.1 Introduction 466
4.6.2 Simulating rockbursts in a tunnel 468
4.6.3 Experimental results 471
4.6.4 Rockburst characteristics in tunnels 482
4.6.5 Conclusions 485
References 486
Further reading 493

Structural effect of rock blocks 495
Shuren Wang and Wenbing Guo
5.1 Cracked roof rock beams 496
5.1.1 Introduction 496
5.1.2 Mechanical model of a cracked roof beam 497
5.1.3 Instability feature of cracked roof beams 505
5.1.4 Mechanical analysis of roof rock beams 507
5.1.5 Conclusions 512
5.2 Evolution characteristics of fractured strata structures 512
5.2.1 Introduction 512
5.2.2 Engineering background 515
5.2.3 Mechanical and computational model 517
5.2.4 Results and discussion 521
5.2.5 Conclusions 531
5.3 Pressure arching characteristics in roof blocks 532
5.3.1 Introduction 532
5.3.2 Pressure arching characteristics 534
5.3.3 Evolution characteristics of pressure arch 541
5.3.4 Results and discussion 546
5.3.5 Conclusions 549
5.4 Composite pressure arch in thin bedrock 550
5.4.1 Introduction 550
5.4.2 Engineering background and pressure arch structure 551
5.4.3 Computational model and similar experiment 557
WJ Contents
5.4.4 Results and discussion 560
5.4.5 Conclusions 568
5.5 Pressure arch performances in thick bedrock 569
5.5.1 Introduction 569
5.5.2 Engineering background 571
5.5.3 Pressure-arch analysis and experimental methods 572
5.5.4 Results and discussion 577
5.5.5 Conclusions 586
5.6 Elastic energy of pressure arch evolution 587
5.6.1 Introduction 587
5.6.2 Engineering background 589
5.6.3 Pressure-arch analysis and computational model 591
5.6.4 Simulation results and discussion 594
5.6.5 Conclusions 604
5.7 Height predicting of water-conducting zone 605
5.7.1 Introduction 605
5.7.2 High-intensity mining in China 606
5.7.3 OFT influence on FWCZ development 608
5.7.4 Development mechanism of FWCZ based on OFT 611
5.7.5 Example analysis and numerical simulation 613
5.7.6 Engineering analogy 624
5.7.7 Conclusions 627
References 627
Further reading 633
Index 635
內容試閱
The scale effect objectively exists. The scale effect of rock refers to the dependence of the change of the rocks mechanical properties on the size of the sampling grid. The scale is the spatial dimension and time dimension of the object or process. The spatial scale refers to the area size of the study unit or the spatial resolution level of the smallest information unit, and the time scale is the time interval of its dynamic change. There are great mechanical differences in the strength and deformation characteristics of rocks of different sizes. The strength and deformation characteristics of rocks of a certain size cannot be directly applied to geotechnical engineering design and the establish- ment of constitutive relations. Therefore, rock scale analysis and scale effect are important to the engineering.
Rock mass differs from the general continuous medium in that there are var- ious structural planes in the rock mass. Also, the rock mass structure, composed of the structural plane and the rock created by the structural plane, control the mechanics and mechanical properties of the rock mass. The influence of the rock mass structure on the mechanical properties of the rock mass is called the structural effect of rock mass mechanical properties. Due to the loading and unloading processes of engineering loads, structural loads, temperature loads, and underground fluid infiltration, the stability of rock engineering is a very prominent area of research. It has become a research hotspot of geotech- nical engineering to study the structural effects of rock mass.
This book summarizes and enriches the latest research results on the scale- size and structural effects of rock materials, including test methods, innovative technologies and their applications in indoor tests, rock mechanics, and rock engineering. The book is divided into five chapters: Chapter 1: Size Effect of Rock Samples Hossein Masoumi; Chapter 2: Rock Fracture Toughness Sheng Zhang; Chapter 3: Scale Effect of Rock Joint Joung Oh; Chapter 4: Microseis- mic Monitoring and Application Shuren Wang 13, Xiangxin Liu 46, and Chapter 5: Structural Effect of Rock Blocks Shuren Wang 16, Wenbing Guo 7. This book is innovative, practical, and rich in content. It will be of great use and interest to researchers undertaking various rock tests, geotechnical engineering, and rock mechanics as well as for teachers and students in related universities and onsite technical people.
The material presented in this book contributes to the expansion of knowl- edge related to rock mechanics and engineering. Through their extensive

YJ
YJJ Preface
fundamental and applied research over the past decade, the authors cover a diverse range of topics, including the scale-size and structural effects of rock materials through the interaction of large-scale rock masses and engineering practices; the mechanics of rock cutting; techniques to improve the strength and integrity of rock structures in surface and underground excavations; and improvements in approaches to modeling techniques used in engineering design.
Shuren Wanga Hossein Masoumib
Joung Ohc Sheng Zhangd
aPh.D. Professor in School of Civil Engineering,
Henan Polytechnic University, Jiaozuo, China
bPh.D. Senior Lecturer in Department of Civil Engineering, Faculty of Engineering, Monash University, Melbourne, VIC, Australia cPh.D. Senior Lecturer in School of Minerals and Energy
Resources Engineering, The University of New South Wales,
Sydney, NSW, Australia dPh.D. Professor in School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, China

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.