新書推薦:
《
身体自愈力:解决内在病因的身体智慧指南
》
售價:NT$
449.0
《
非言语沟通经典入门:影响人际交往的重要力量(第7版)
》
售價:NT$
560.0
《
山西寺观艺术壁画精编卷
》
售價:NT$
7650.0
《
中国摄影 中式摄影的独特魅力
》
售價:NT$
4998.0
《
山西寺观艺术彩塑精编卷
》
售價:NT$
7650.0
《
积极心理学
》
售價:NT$
254.0
《
自由,不是放纵
》
售價:NT$
250.0
《
甲骨文丛书·消逝的光明:欧洲国际史,1919—1933年(套装全2册)
》
售價:NT$
1265.0
|
編輯推薦: |
本书从Python基础语法到科学计算库,系统地剖析了Python数据分析的技能树,并搭配项目实战,帮助读者更好更快地掌握Python数据分析的知识体系。
|
內容簡介: |
本书系统地描述了如何利用Python语言进行数据分析。由浅入深的编写方式可以帮助读者轻松愉快地进入数据的世界。
全书从理论到实践、从基础语法到科学计算库,循序渐进地讲解了Python数据分析所需要学习的技能。搭配项目实战帮助读者更好、更快地掌握Python数据分析知识点。此外,还全面介绍了数据分析的必知必会技能。
本书提供代码资源下载服务,每章均配有重要知识点串讲视频。
本书不仅适合零基础喜欢数据分析的入门级读者,还可助力数据分析从业者进行技术进阶。
|
目錄:
|
致数字化人才的一封信
前言
●第1章认识数据分析
1.1重新认识数据分析
1.1.1数据的定义
1.1.2分析数据的重要性
1.2数据的类别与变化
1.3数据处理
1.3.1数据处理的含义
1.3.2脏数据
1.3.3数据清洗
1.4数据分析
1.4.1数据分析的流程与方法
1.4.2Python数据分析常用库
1.4.3数据分析的结论
●第2章环境安装
2.1Python简介
2.2Python的常用IDE
2.3Anaconda
2.3.1Anaconda安装包的获取
2.3.2Anaconda在不同系统中的安装
2.4Jupyter Notebook 功能介绍
2.4.1Jupyter Notebook启动方法
2.4.2常用快捷键
2.4.3常用功能
2.5安装第三方库
2.5.1pip网络安装
2.5.2pip本地安装
●第3章Python基础知识
3.1输出和输入
3.1.1输出
3.1.2输入
3.1.3格式化输出
3.2变量
3.2.1变量的定义
3.2.2命名规则
3.2.3变量类型
3.3注释
3.4运算符
3.4.1算术运算符
3.4.2赋值运算符
3.4.3比较运算符
3.4.4逻辑运算符
3.5结构语句
3.5.1顺序结构语句
3.5.2选择结构语句
3.5.3循环结构语句
3.5.4结构语句中的特殊语句
3.6数据类型
3.6.1数值和字符串
3.6.2列表
3.6.3元组
3.6.4字典
3.7函数
3.7.1函数的定义
3.7.2函数的参数
3.7.3函数的返回值
3.7.4全局变量与局部变量
3.8模块与文件
3.8.1三种模块
3.8.2管理模块的包
3.8.3文件的基础操作
3.9异常报错机制
3.10Python项目
3.10.1项目练习1
3.10.2项目练习2
●第4章数据灵魂基础之NumPy
4.1NumPy 安装
4.2数组的创建
4.3数组
4.4数据类型
4.5索引与切片
4.6通用函数
4.6.1统计函数
4.6.2随机函数
4.6.3连接函数
4.6.4其他函数
●第5章数据规整之Pandas入门
5.1Pandas中的数据对象
5.1.1Series对象
5.1.2DataFrame对象
5.2数据索引与选取
5.2.1[]操作
5.2.2.loc[]与.iloc[]
5.2.3.at[]与.iat[]
5.3Pandas的常用方法
5.3.1Pandas的基本方法
5.3.2Pandas数值运算方法
5.3.3Pandas处理文本字符串
5.3.4Pandas的合并与连接
5.3.5Pandas操作应用方法
●第6章数据加载
6.1txt文件的读写操作
6.1.1读取txt文件内容
6.1.2with与readlines
6.1.3写入txt文件内容
6.2CSV文件的读写操作
6.2.1读取CSV文件内容
6.2.2写入CSV文件内容
6.3Excel文件的读写操作
6.3.1读取Excel文件内容
6.3.2写入Excel文件内容
6.4JSON文件的读写操作
6.4.1读取JSON文件内容
6.4.2写入JSON文件内容
6.5SQL文件的读取
6.5.1PyMySQL读取MySQL数据库内容
6.5.2Pandas读取MySQL数据库内容
●第7章数据预处理
7.1数据预处理是什么
7.1.1重复数据的处理
7.1.2缺失值的处理
7.1.3异常值的处理
7.2数据变换
7.2.1转换数据类型
7.2.2数据标准化(Z-score标准化)
7.2.3数据归一化(Min-Max标准化)
7.3高级数据预处理方法
7.3.1哑变量
7.3.2独热编码
7.4数据预处理实战
7.4.1数据观察
7.4.2数据预处理实战
7.4.3数据标准化
●第8章Pandas数据优化
8.1多层索引
8.1.1多层索引的创建
8.1.2多层索引操作
8.1.3Series多层索引
8.1.4DataFrame多层索引
8.2groupby应用机制
8.2.1分组对象
8.2.2通过by参数进行分组
8.2.3通过level参数进行分组
8.2.4分组聚合
8.2.5agg聚合
8.2.6apply函数
8.3时间序列
8.3.1创建时间索引
8.3.2通过日期时间索引获取元素
8.3.3重采样
8.4滑动窗口
●第9章数据可视化
9.1Pandas图形绘制
9.2Matplotlib图形绘制
9.2.1Figure绘图参数详解
9.2.2Matplotlib常用图形绘制
9.3Seaborn图形绘制
9.3.1设置Seaborn绘图风格
9.3.2Seaborn常用图形绘制
●第10章电商销售数据分析
10.1数据准备
10.2数据清洗
10.2.1查看是否含有缺失值
10.2.2查看是否含有异常值
10.2.3数据整理
10.3具体目标分析
10.4案例结论
|
內容試閱:
|
随着信息时代的到来,数字化经济革命的浪潮正在颠覆性地改变着人类的工作方式和生活方式。在数字化经济时代,从抓数字化管理人才、知识管理人才和复合型管理人才教育入手,加快培养知识经济人才队伍,可为企业发展和提高企业核心竞争能力提供强有力的人才保障。目前,数字化经济在全球经济增长中扮演着越来越重要的角色,以互联网、云计算、大数据、物联网、人工智能为代表的数字技术近几年发展迅猛,数字技术与传统产业的深度融合释放出巨大能量,成为引领经济发展的强劲动力。
在日常生活和工作中,海量数据不断产生,而如今这个时代数据就是生产力。数据分析从业者都希望高效地分析数据,发现数据背后的秘密。Python语言具有强大的数据处理能力,因此成为数据分析首选语言。
本书从Python基础语法到科学计算库,由浅入深,逐步介绍数据分析工具及数据分析的方法论。最后通过实战案例贯穿所有知识点,实现理论与实践的完美结合。
本书的内容包括认识数据分析、环境安装、Python基础知识、数据灵魂基础之NumPy、数据规整之Pandas入门、数据加载、数据预处理、Pandas数据优化、数据可视化及电商销售数据分析等。阅读本书,读者能够轻松掌握Python基础语法及科学计算库,学会使用Python实现数据抽取、数据清洗、数据集成、数据变换、数据向量化及数据可视化等,还可以通过实战案例深入理解数据分析的思路和流程。
本书每章都配有专属二维码,读者扫描后即可观看作者对于本章重要知识点的讲解视频。扫描下方的开课吧公众号二维码将获得与本书主题对应的课程观看资格及学习资料,同时可以参与其他活动,获得更多的学习课程。
本书所有案例都在Anaconda环境中调试运行通过,并且每章中都提供了相应的资源,以帮助读者顺利完成编码任务,读者可以按照书中内容进行练习。此外,本书配有源代码资源文件,读者可登录https:github.comkaikeba免费下载使用。
本书由数字化人才在线教育平台开课吧组编,参加本书编写的有杨国俊、张植皓、潘海超、梁勇、常江、李潇迪、丁燕琳、杨乐、吴慧斌、王学习、王国鹤和朱建安等。
限于时间和作者水平,书中难免有不足之处,恳请读者批评指正。
编者
|
|