登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』贝叶斯数据分析——基于R与Python的实现(基于R应用的统计学丛书

書城自編碼: 3529828
分類: 簡體書→大陸圖書→教材研究生/本科/专科教材
作者: 吴喜之
國際書號(ISBN): 9787300283258
出版社: 中国人民大学出版社
出版日期: 2020-07-01

頁數/字數: /
書度/開本: 128开 釘裝: 平装

售價:NT$ 276

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
卫宫家今天的饭9 附画集特装版(含漫画1本+画集1本+卫宫士郎购物清单2张+特制相卡1张)
《 卫宫家今天的饭9 附画集特装版(含漫画1本+画集1本+卫宫士郎购物清单2张+特制相卡1张) 》

售價:NT$ 602.0
化妆品学原理
《 化妆品学原理 》

售價:NT$ 254.0
万千教育学前·与幼儿一起解决问题:捕捉幼儿园一日生活中的教育契机
《 万千教育学前·与幼儿一起解决问题:捕捉幼儿园一日生活中的教育契机 》

售價:NT$ 214.0
爱你,是我做过最好的事
《 爱你,是我做过最好的事 》

售價:NT$ 254.0
史铁生:听风八百遍,才知是人间(2)
《 史铁生:听风八百遍,才知是人间(2) 》

售價:NT$ 254.0
量子网络的构建与应用
《 量子网络的构建与应用 》

售價:NT$ 500.0
拍电影的热知识:126部影片里的创作技巧(全彩插图版)
《 拍电影的热知识:126部影片里的创作技巧(全彩插图版) 》

售價:NT$ 500.0
大唐名城:长安风华冠天下
《 大唐名城:长安风华冠天下 》

售價:NT$ 398.0

內容簡介:
贝叶斯统计是和基于频率的传统统计 频率派统计 不同的一套关于统计推断或决策
的理论、方法与实践. 本书除了介绍贝叶斯统计的基本概念之外, 还介绍了不同贝叶斯模型的数学背景、与贝叶斯模型对应的各种计算方法, 并基于数据例子来介绍如何通过各种软件实现数据分析.本书使用的软件是以 R 为平台的 Stan 和以 Python 为平台的 PyMC3, 它们都是人们喜爱的*的基于 MCMC 和C 编译器的贝叶斯编程软件. 相信读者能够通过实践掌握它们。
本书希望使对贝叶斯统计感兴趣的广大群体获得强有力的计算能力, 以发挥他们无穷的想象力和创造力.
關於作者:
吴喜之,北京大学数学力学系本科,美国北卡罗来纳大学统计博士。中国人民大学统计学院教授,博士生导师。曾在美国加利福尼亚大学、北卡罗来纳大学以及南开大学、北京大学等多所著名学府执教。
目錄
第一部分 基础篇
第1章 引言
1.1 为什么用贝叶斯
1.1.1 传统数理统计的先天缺陷
1.1.2 贝叶斯方法是基于贝叶斯定理发展起来的用于系统地阐述和解决统计问题的方法
1.2 本书所强调的贝叶斯编程计算的意义
1.3 本书的构成和内容安排
1.4 习题
第2章 基本概念
2.1 概率的规则及贝叶斯定理
2.1.1 概率的规则
2.1.2 概率规则的合理性、贝叶斯定理、优势比、后验分布
2.1.3 贝叶斯和经典统计基本概念的一些比较
2.2 决策的基本概念
2.3 贝叶斯统计的基本概念
2.3.1 贝叶斯定理
2.3.2 似然函数
2.3.3 后验分布包含的信息
2.3.4 几个简单例子
2.3.5 先验分布的形式
2.4 共轭先验分布族
2.4.1 常用分布及其参数的共轭先验分布*
2.4.2 指数先验分布族的一些理论结果*
2.5 习题
第3章 基本软件: R和Python
3.1 R 简介?D?D为领悟而运行
3.1.1 简介
3.1.2 安装和运行小贴士
3.1.3 动手
3.1.4 实践
3.2 Python 简介?D?D为领悟而运行
3.2.1 引言
3.2.2 安装
3.2.3 基本模块的编程
3.2.4 Numpy 模块
3.2.5 Pandas 模块
3.2.6 Matplotlib 模块
3.3 习题
第二部分 几个常用初等贝叶斯模型71
第4章 比例的推断: Bernoulli 试验
4.1 采用简单共轭先验分布
4.1.1 例4.1 的关于的后验分布及其最高密度区域
4.1.2 例4.1 的关于 的最高密度区域的R 代码计算
4.1.3 例4.1 的关于 的最高密度区域的Python 代码计算
4.2 稍微复杂的共轭先验分布
4.2.1 模型4.2.1 ~ 4.2.3 拟合例
4.2 数据直接按公式计算的R 代码
4.2.2 模型4.2.1 ~ 4.2.3 拟合例
4.2 数据直接按公式计算的Python 代码
4.3 习题
第5章 发生率的推断: Poisson 模型
5.1 Poisson 模型和例子
5.2 对例5.1 的分析和计算
5.2.1 通过R代码利用公式分析例5.1
5.2.2 例5.1 最高密度区域的Python代码
5.3 习题
第6章 正态总体的情况
6.1 正态分布模型
6.2 均值未知而精度已知的情况
6.2.1 利用公式6.2.1、6.2.2 拟合例6.1 的数据R
6.2.2 利用公式6.2.1、6.2.2 拟合例6.1 数据的后验最高密度区域Python
6.3 两个参数皆为未知的情况
6.3.1 使用公式6.3.1、6.3.2 对例6.1 的分析R
6.3.2 使用公式6.3.1、6.3.2 对例6.1 的分析Python
6.4 习题
第三部分 算法、概率编程及贝叶斯专门软件
第7章 贝叶斯推断中的一些算法
7.1 最大后验概率法
7.2 拉普拉斯近似
7.3 马尔可夫链蒙特卡罗方法
7.3.1 蒙特卡罗积分
7.3.2 马尔可夫链
7.3.3 MCMC 方法综述
7.3.4 Metropolis 算法
7.3.5 Metropolis-Hastings 算法
7.3.6 Gibbs 抽样
7.3.7 Hamiltonian 蒙特卡罗方法
7.4 EM 算法
7.5 变分贝叶斯近似
第8章 概率编程贝叶斯编程
8.1 引言
8.2 概率编程概述
8.2.1 概率编程要点
8.2.2 先验分布的选择?D?D从概率编程的角度
8.3 贝叶斯计算专用软件
8.4 RStan
8.4.1 概述
8.4.2 安装
8.4.3 对例8.1 的数据运行RStan
8.5 PythonPyMC3
8.5.1 概述
8.5.2 安装
8.5.3 对例8.1 的数据运行PythonPyMC3
8.6 通过一个著名例子进一步熟悉RStan 和PythonPyMC3
8.6.1 RStan 关于例8.2 的模型8.6.1 ~ 8.6.4 的代码

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.