新書推薦:
《
关键改变:如何实现自我蜕变
》
售價:NT$
352.0
《
超加工人群:为什么有些食物让人一吃就停不下来
》
售價:NT$
454.0
《
历史的教训(浓缩《文明的故事》精华,总结历史教训的独特见解)
》
售價:NT$
286.0
《
不在场证明谜案(超绝CP陷入冤案!日本文坛超新星推理作家——辻堂梦代表作首次引进!)
》
售價:NT$
265.0
《
明式家具三十年经眼录
》
售價:NT$
2387.0
《
敦煌写本文献学(增订本)
》
售價:NT$
1010.0
《
耕读史
》
售價:NT$
500.0
《
地理计算与R语言
》
售價:NT$
551.0
|
內容簡介: |
视频图像处理是一门交叉学科,涉及图像处理、模式识别、计算机视觉等。随着其发展和应用的深入,视频图像处理已成为工程学、计算机科学、信息科学等的重要组成部分。《视频图像处理(英文版)》系统阐述视频图像处理的概念、原理和**方法,主要内容包括:视频图像处理基础、视频图像复原、显著性检测、目标检测、目标跟踪、目标识别、红外视频图像处理、水下视频图像处理等。
|
目錄:
|
Contents
Preface i
Chapter 1 Introduction 1
1.1 Video Image Restoration 1
1.2 Target Detection in Video Images 1
1.3 Target Tracking in Surveillance Videos 2
1.4 Video Image Saliency Detection 3
1.5 Underwater Video Image Processing 4
1.6 Vision Image Processing for River Surface Velocimetry 5
1.7 Remote Sensing Imagery Processing and Analysis 6
References 7
Chapter 2 Video Image Restoration 10
2.1 Automatic Image De-weathering Using Physical Model and Maximum Entropy 10
2.1.1 Introduction 10
2.1.2 Automatic Contrast Restoration 11
2.1.3 Experimental Results 15
2.1.4 Conclusion 16
2.2 Image Dehazing Using Degradation Model and Group-based Sparse Representation 17
2.2.1 Introduction 17
2.2.2 Preliminaries 18
2.2.3 Presented Approach 18
2.2.4 Experimental Results 20
2.2.5 Conclusion 23
References 23
Chapter 3 Target Detection in Video Images 26
3.1 A Sparse Representation-based Method for Infrared Dim Target Detection under Sea-sky Background 26
3.1.1 Introduction 26
3.1.2 Related Work 27
3.1.3 Proposed Approach 28
3.1.4 Experimental Results 33
3.1.5 Conclusion 39
3.2 Spatiotemporal Saliency Model for Small Moving Object Detection in Infrared Videos 39
3.2.1 Introduction 39
3.2.2 Spatiotemporal Saliency Model for Infrared Videos 40
3.2.3 Experimental Results 45
3.2.4 Conclusion 48
References 49
Chapter 4 Target Tracking in Surveillance Videos 52
4.1Multi-feature Local Sparse Representation for Infrared Pedestrian Tracking 52
4.1.1 Introduction 52
4.1.2 Related Work 53
4.1.3 Proposed Method 54
4.1.4 Experimental Results 61
4.1.5 Conclusion 66
4.2 Spatiotemporal Difference-of-Gaussians Filters for Robust Infrared Small Target Tracking in Various Complex Scenes 67
4.2.1 Introduction 67
4.2.2 Spatiotemporal Gabor Filters 68
4.2.3 Combined Difference-of-Gaussians Filter for Small IR Target Detection 69
4.2.4 Spatiotemporal Difference-of-Gaussians Filters for Small IR Target Tracking 71
4.2.5 Experimental Results 76
4.2.6 Conclusions 86
References 86
Chapter 5 Video Image Saliency Detection 91
5.1 A Novel Visual Saliency Detection Method for Infrared Video Sequences 91
5.1.1 Introduction 91
5.1.2 Proposed Method 93
5.1.3 Experimental Results 102
5.1.4 Conclusion 109
5.2 Visual Saliency Detection Based on In-depth Analysis of Sparse Representation 109
5.2.1 Introduction 109
5.2.2 Related Work 111
5.2.3 Proposed Method 112
5.2.4 Experimental Results 118
5.2.5 Conclusion 125
References 126
Chapter 6 Underwater Video Image Processing 130
6.1 An Integrative Framework for Effective Restoration of Underwater Images 130
6.1.1 Introduction 130
6.1.2 Related Work 131
6.1.3 Proposed Method 133
6.1.4 Experimental Results 138
6.1.5 Conclusion 148
6.2 Combination of Interacting Multiple Models with the Particle Filter for Three-dimensional Target Tracking in Underwater Wireless Sensor Networks 148
6.2.1 Introduction 148
6.2.2 Problem Formulation 149
6.2.3 IMMPF Underwater Target Tracking Algorithm 153
6.2.4 Simulation and Results 155
6.2.5 Conclusion 158
References 158
Chapter 7 Video Image Processing for River Surface Velocimetry 162
7.1 Balloon-borne Spectrum-polarization Imaging for River Surface Velocimetry under Extreme Conditions 162
7.1.1 Introduction 162
7.1.2 Near-infrared Spectrum-polarization Imaging for Flow Tracers Detection 163
7.1.3 Balloon-borne Low-altitude Telemetry System with A Self-stabilized Servo Platform 166
7.1.4 Experimental Results 169
7.1.5 Conclusion 171
7.2 An Information Acquisition Method Based on Dragonfly Vision Mechanism for Observed Target Displacement Measurement 171
7.2.1 Introduction 171
7.2.2 Related Work 172
7.2.3 Optical Characteristics of River Surface 173
7.2.4 Our Approach 174
7.2.5 Experimental Results 176
7.2.6 Conclusion 179
References 179
Chapter 8 Remote Sensing Imagery Processing and Analysis 182
8.1 Multi-class Remote Sensing Objects Recognition Based on Discriminative Sparse Representation 182
8.1.1 Introduction 182
8.1.2 Related Work 184
8.1.3 Proposed Method 185
8.1.4 Experimental Results 193
8.1.5 Conclusion 203
8.2 Integration of Heterogeneous Features for Remote Sensing Scene Classification 203
8.2.1 Introduction 203
8.2.2 Proposed Method 206
8.2.3 Experimental Results 213
8.2.4 Conclusion 221
References 221
|
|