登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

2023年08月出版新書

2023年07月出版新書

『簡體書』储能用介电复合材料研究进展(英文版)Development of Dielectric Composites for Dielectric and Energy Storage Applications

書城自編碼: 3515749
分類: 簡體書→大陸圖書→工業技術一般工业技术
作者: 同阳
國際書號(ISBN): 9787513067096
出版社: 知识产权出版社
出版日期: 2019-12-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:NT$ 428

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
日耳曼通识译丛:复原力:心理抗逆力
《 日耳曼通识译丛:复原力:心理抗逆力 》

售價:NT$ 155.0
海外中国研究·未竟之业:近代中国的言行表率
《 海外中国研究·未竟之业:近代中国的言行表率 》

售價:NT$ 614.0
算法经济 : 商业逻辑与人类生活的智能演进(生动呈现AI与算法的创新应用与商业价值)
《 算法经济 : 商业逻辑与人类生活的智能演进(生动呈现AI与算法的创新应用与商业价值) 》

售價:NT$ 359.0
偏爱月亮
《 偏爱月亮 》

售價:NT$ 207.0
津轻:日本无赖派文学代表太宰治自传性随笔集
《 津轻:日本无赖派文学代表太宰治自传性随笔集 》

售價:NT$ 302.0
河流之齿
《 河流之齿 》

售價:NT$ 270.0
新经济史革命:计量学派与新制度学派
《 新经济史革命:计量学派与新制度学派 》

售價:NT$ 406.0
盗墓笔记之秦岭神树4
《 盗墓笔记之秦岭神树4 》

售價:NT$ 259.0

編輯推薦:
这是一本储能介电复合材料*研究成果和进展的科技书。
內容簡介:
本书系统地介绍了介电复合材料的制备、表征及性能,并在此基础上总结复合材料的介电理论,揭示复合材料结构影响性能的机理。本书可作为高等院校及科研院所材料等专业科研人员对介电复合材料开展研究工作的参考,对从事介电材料生产与应用单位的工程师和管理工作者具有指导作用。
關於作者:
同阳,男,1988年6月生。博士研究生学历,最高学历毕业于美国奥本大学。2017年12月博士毕业后在奥本大学任博士后至2018年6月,博士后任职结束后回国,任职于太原科技大学。主要研究方向为介电材料的制备与表征,熟悉聚合物基材料、陶瓷基材料的制备及性能表征方法,尤其擅长复合材料的研究,通晓材料介电性能的主要理论,善于汇总数据、理论分析,精通于使用各种表征仪器。
目錄
C o n t e n t s
Chapter 1 Introduction and Research Objectives 1
1.1 Theory of Dielectric Materials 2
1.1.1 Permittivity 2
1.1.2 Dielectric Loss 4
1.1.3 Relaxation 6
1.2 Classification of Dielectric Materials 8
1.2.1 Non Polar Materials 9
1.2.2 Polar Materials 9
1.3 Application of Dielectrics 12
1.3.1 HighLow Permittivity 12
1.3.2 Energy Storage 13
1.3.3 Wearable Electronics 17
1.4 Dielectric Composites 18
1.4.1 General Concepts of Composites 18
1.4.2 Flexible Polymer-Based Dielectric Composites 20
1.4.3 Ceramic-Glass Dielectric Composites 29
1.4.4 Interface Effect in Composites 30
1.5 Objectives of Research 32
References 33
Chapter 2 Preparation and Characterization Methods 47
2.1 Raw Materials 48
2.1.1 MXene 2-D Material Ti3C2Tx 48
2.1.2 Calcium Copper Titanate CaCu3Ti4O12 50
2.1.3 Barium Titanate BaTiO3 51
2.1.4 Barium Strontium Titanate Ba0.5Sr0.5TiO3 54
2.2 Conductor-Polymer Composite Fabrication 56
2.2.1 Preparation 56
2.2.2 Optimization 56
2.3 Ceramic-Polymer Composite Fabrication 60
2.3.1 Preparation 60
2.3.2 Optimization 61
2.4 Ceramic-Glass Composite Fabrication 63
2.4.1 Preparation 63
2.4.2 Optimization 66
2.5 Characterization Methods 69
2.5.1 Crystalline Structure Determination 69
2.5.2 Microstructure Analysis 70
2.5.3 Dielectric Properties Analysis 71
2.5.4 Energy Density Calculation 72
References 73
Chapter 3 Conductor-Polymer Composite Using 2-D
Conductive Fillers 79
3.1 Introduction 80
3.2 Samples 81
3.3 Structure and Morphology Characterization 82
3.3.1 X-ray Diffraction 82
3.3.2 Differential Scanning Calorimetry 83
3.3.3 Scanning Electron Microscopy 86
3.3.4 Fourier Transform Infrared Spectroscopy 87
3.4 Dielectric Properties 90
3.4.1 Frequency Dependency of Dielectric Properties at
Room Temperature 90
3.4.2 Temperature Dependency of Dielectric Properties 92
3.4.3 Dielectric Properties at High Electric Fields 94
3.5 Discussion 97
3.5.1 Percolation Threshold 97
3.5.2 Effect of Silicon Coupling Agent 105
3.5.3 Crystallinity Increase Due to Filler Addition 107
3.6 Summary 111
References 112
Chapter 4 Ceramic-Polymer Composite with
Coupling Agent 115
4.1 Introduction 116
4.2 Samples 117
4.3 Structure and Morphology Characterization 118
4.4 Dielectric Properties 121
4.4.1 Dielectric Properties with Different
Filler Contents 121
4.4.2 Temperature Dependency of Dielectric
Properties 125
4.5 Discussion 127
4.5.1 Coverage of Silicon Coupling Agent 127
4.5.2 Effect of Silicon Coupling Agent on
Dielectric Properties 130
4.6 Summary 133
References 134
Chapter 5 Ceramic-Glass Composite 137
5.1 Introduction 138
5.2 Sample and Systems 139
5.3 BaTiO3-SiO2 Composites Prepared by
Conventional Sintering 141
5.3.1 Structure and Morphology Characterization 141
5.3.2 Dielectric Properties 149
5.3.3 Discussion 156
5.4 Ba0.5Sr0.5TiO3-SiO2 Composites Prepared
by Conventional Sintering 164
5.4.1 Structure of Composites 164
5.4.2 Dielectric Properties 167
5.4.3 Discussion 172
5.5 Summary 175
References 178
Chapter 6 Conclusions and Perspectives 181
6.1 Conclusions 182
6.2 Perspectives 185
內容試閱
Preface
Dielectrics, which are materials responding to an external electric field with a polarization, have been widely used in industries.Dielectrics with high permittivity and high breakdown strength are
required for the applications including high charge capacitors and energy storage devices, where the dielectric composites could found their position as the potential candidates. As the commonly used matrix for dielectric composite, glasses and polymers exhibit high breakdown strength, but small permittivity. To increase the permittivity and energy storage density, a great deal of effort has gone into developing the high breakdown strength matrix filled with high permittivity ceramics or conductive materials to create new types of dielectrics that is easier to
process while maintaining useful dielectric properties.
For the purpose of getting the optimized composites for dielectric and energy storage applications, both polymer based and glass based composites were fabricated and studied in the research. By the using of different matrix and fillers and optimization of fabrication process, the
dielectric composites with excellent performances were obtained.
According to the analysis of the data from testing, these composites were proved to be the potential candidates for the applications including high charge capacitors, energy storage device and even wearable electronics.
For the purpose of effectively increase dielectric constant, conductorpolymer was firstly introduced as potential dielectric composites. In this part of research, the 2-D conductors was used as the filler due to its high conductivity and polar polymers was used as the matrix because of the relatively good permittivity and high breakdown strength. It was found that although the increase of dielectric constant by combining 2-D conductive fillers and polymer matrix was proved by previous studies, the application of the composites is still limited by the high loss and low breakdown strength. Therefore, ceramic-polymer dielectric composites were studied as the secondary part of the research to create a composite with high energy and low loss. In both conductor- polymer and ceramic-polymer composites, methods including solution casting, hot
pressing and silicon coupling agent was used in the preparation of polymer-based composites. In the tertiary part of research, the focus points was turned to the detailed studies glass based dielectric composites due to the fact that the type of materials have the ability to keep the balance between high permittivity and energy storage density.
The varieties of nanopowders were studied in making composite pellets by conventional sintering under different conditions, such as molding pressure, sintering temperature, and ceramic powder size. By summarize the results, several conclusions about processing effects were obtained.
The Chapter 1, 2, 3 and 5 of this book was edited by Dr. Yang Tong from Taiyuan University of Science and Technology; the Chapter 4 of this book was cooperatively edited by Mr. Dong Zhang, Mr. Dengyu Zhang, Mr. Zechen Li, Mr. Jun cai Yu from Beijing Institute of Aerospace System Engineering, and Mr. Lei Han, Mr. Yu Cao from Tianjin Long March Launch Vehicle Manufacturing Co. Ltd.
This book was sponsored by the Fund of Shanxi Key Subjects Construction, the Key Laboratory of Magnetic and Electric Functional Materials and Applications in Shanxi Province, Institute of Magnetic Material Engineering and Adcanced Materials, Key Innovation Centre of "1331" Project in Shanxi Province for Magnetoelectronic Materials and Devices, Heavy Machinery Engineering Research Center of the Ministry of Education, Collaborative Innovation Centre of Taiyuan Heavy Machinery Equipment, Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, and the works relevant to this book were supported by the Taiyuan University of Science and Technology Scientific Research Initial Funding 20182028, Doctoral Starting Foundation of Shanxi Province 20192006, Science and Technology Major Project of Shanxi Province MC2016-01, National Natural Science Foundation of China Grant No. 51731003, and Project U610256 supported by National Natural Science Foundation of China.
Yang Tong
September 10th, 2019
Development of Dielectric Composites for Dielectric and Energy Storage Applications

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.