|
內容簡介: |
本书从统计学观点出发,以数理统计为基础,全面系统地介绍了统计机器学习的主要方法。内容涉及回归(线性回归、多项式回归、非线性回归、岭回归,以及LASSO等)、分类(感知机、逻辑回归、朴素贝叶斯、决策树、支持向量机、人工神经网络等)、聚类(K均值、EM算法、密度聚类等)、蒙特卡洛采样(拒绝采样、自适应拒绝采样、重要性采样、吉布斯采样和马尔科夫链蒙特卡洛等)、降维与流形学习(SVD、PCA和等),以及概率图模型基础等话题。此外,为方便读者自学,本书还扼要地介绍了机器学习中所需必备数学知识(包括概率论与数理统计,凸优化及泛函分析基础等)。本书是统计机器学习及相关课程的教学参考书,适用于高等院校人工智能、机器学习或数据挖掘等相关专业的师生研习之用,也可供从事计算机应用特别是数据科学相关专业的研发人员参考。
|
關於作者: |
左飞博士,技术作家、译者。著作涉及人工智能、图像处理和编程语言等多个领域,其中两部作品的繁体版在中国台湾地区发行。同时,他还翻译出版了包括《编码》在内的多部经典著作。曾荣获最受读者喜爱的IT图书作译者奖。他撰写的技术博客(https:baimafujinji.blog.csdn.net)非常受欢迎,累计拥有超过400万的访问量。
|
|