登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』非线性发射光子玻璃光纤波导器件(英文版)

書城自編碼: 3470788
分類: 簡體書→大陸圖書→自然科學物理學
作者: 姜淳,宋培
國際書號(ISBN): 9787547845615
出版社: 上海科学技术出版社
出版日期: 2019-10-01

頁數/字數: /
書度/開本: 16开 釘裝: 精装

售價:NT$ 1247

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
甲骨文丛书·剑桥世界暴力史(第一卷):史前和古代世界(套装全2册)
《 甲骨文丛书·剑桥世界暴力史(第一卷):史前和古代世界(套装全2册) 》

售價:NT$ 959.0
甲骨文丛书·中华早期帝国:秦汉史的重估
《 甲骨文丛书·中华早期帝国:秦汉史的重估 》

售價:NT$ 1367.0
欲望与家庭小说
《 欲望与家庭小说 》

售價:NT$ 449.0
惜华年(全两册)
《 惜华年(全两册) 》

售價:NT$ 320.0
甲骨文丛书·古代中国的军事文化
《 甲骨文丛书·古代中国的军事文化 》

售價:NT$ 454.0
中国王朝内争实录(套装全4册):从未见过的王朝内争编著史
《 中国王朝内争实录(套装全4册):从未见过的王朝内争编著史 》

售價:NT$ 1112.0
半导体纳米器件:物理、技术和应用
《 半导体纳米器件:物理、技术和应用 》

售價:NT$ 806.0
创客精选项目设计与制作 第2版   刘笑笑 颜志勇 严国陶
《 创客精选项目设计与制作 第2版 刘笑笑 颜志勇 严国陶 》

售價:NT$ 281.0

編輯推薦:
稀土掺杂材料的制备和性质的研究在国内外已经有较长的历史,国内外有不少专著总结介绍这方面的成果,这些著作大多是十多前出版的,*近十来年几乎没有新作问世。然而,随着光电子学科的发展,新的稀土离子多重掺杂光子玻璃材料和新的现象不断出现。因此,需要一本新的专著来系统地总结该领域的成果。本书涉及所有的稀土和过渡金属离子的光谱性质,覆盖面非常广,对光电子或相关领域同行极有参考价值。
內容簡介:
本书系统、全面地总结了国内外在稀土离子多重掺杂光子玻璃中发光离子的相互作用方面的*成果,介绍了各类掺杂材料的概念、非线性发光功能效应、研究与开发现状、应用领域、存在的问题及其发展方向。内容包括新型掺杂材料和多稀土共掺杂材料的光谱性质计算、相互作用的理论模型、在光电子器件和光通信系统与网络等中的应用,涉及所有的稀土和过渡金属离子的光谱性质,覆盖面非常广。
關於作者:
姜淳,上海交通大学电子信息与电气工程学院电子工程系教授。2005.10-2006.11: 美国麻省理工学院(MIT)电子学研究实验室(RLE)和物理系高级研究学者。从事光电子材料与器件的研究近20年,发表SCI学术论文100余篇, SCI他引500余次;发明专利10余项;2007年获得教育部自然科学一等奖,2009年获得上海自然科学三等奖。
目錄
1Fundamental Mathematics of Nonlinear Emission Photonic Glass Fiber and Waveguide Devices1
1.1Introduction1
1.2Newton Iteration Algorithm for Nonlinear Rate Equation Solution1
1.2.1SingleVariable1
1.2.2MultiVariable3
1.3RungeKutta Algorithm for PowerPropagation Equation Solution4
1.3.1SingleFunction4
1.3.2MultiFunctions6
1.4TwoPoint Boundary Problem for PowerPropagation Equations in a Laser Cavity7
1.4.1Principle7
1.4.2Shooting Method and Relaxation Method7
References92Fundamental Spectral Theory of Photonic Glasses10
2.1Introduction10
2.2JuddOfelt Theory10
2.3Transition Probability and Quantum Efficiency12
2.4Fluorescence Branch Ratio13
2.5Homogeneous and Inhomogeneous Broadening of Spectra14
References153Spectral Properties of YtterbiumDoped Glasses16
3.1Introduction16
3.2Formation Region of Yb2O3Containing Glasses16
3.3Laser Performance Parameters of YtterbiumDoped Glasses17
3.3.1Minimum Fraction of Excited State Ions17
3.3.2Saturation Pump Intensity18
3.3.3Minimum Pump Intensity18
3.3.4StorageEnergy and Gain Parameters18
3.4Spectral Properties of Yb3+Doped Borate Glasses19
3.4.1Compositional Dependence of Spectral Properties19
3.4.2Dependence of Spectral Properties on Active Ion Concentration22
3.5Spectral Properties of Yb3+Doped Phosphate Glasses23
3.5.1Compositional Dependence of Spectral Properties23
3.5.2Dependence of Spectral Properties on Active Ion Concentration26
3.6Spectral Properties of Yb3+Doped Silicate Glasses28
3.6.1Compositional Dependence of Spectral Properties28
3.6.2Dependence of Spectral Properties on Active Ion Concentration32
3.7Spectral Properties of Yb3+Doped Germanate Glasses34
3.8Spectral Properties of Yb3+Doped Telluride Glasses36
3.8.1Compositional Dependence of Spectral Properties36
3.8.2Dependence of Spectral Properties on Active Ion Concentration39
3.9Dependence of Spectral Property and Laser Performance Parameters on Glass System43
3.9.1Dependence of Spectral Property on Glass Systems43
3.9.2Dependence of Laser Performance Parameters on Glass Systems46
3.10Dependence of EnergyLevel Structure of Yb3+ on Glass Systems51
3.11Cooperative Upconversion of Yb3+ Ion Pairs53
3.11.1Cooperative Upconversion Luminescence53
3.11.2ConcentrationQuenching Mechanics57
3.11.3Concentration Dependence of Luminescence Intensity59
3.12Fluorescence Trap Effect of Yb3+ Ions in Glasses60
References634Compact Fiber Amplifiers65
4.1Introduction65
4.2Level Structure and Numerical Model66
4.3Dependence of Gain and Noise Figure on Concentrations67
4.4Doping Concentrations with ShortLength High Gain71
References725Photonic Glass Fiber Lasers74
5.1Introduction74
5.2Fundamental Physics of Fiber Laser74
5.2.1Lasing Conditions of Laser74
5.2.2Threshold Gain75
5.2.3Phase Condition and Laser Modes76
5.2.4Population Inversion Calculation76
5.3Numerical Models of RareEarthDoped Fiber Lasers80
5.3.1Configuration and PowerPropagation Equations of Fiber Laser80
5.3.2Output Power of a TwoLevel Fiber Laser81
5.3.3Output Power of a ThreeLevel Fiber Laser83
5.3.4Output Power of a FourLevel Fiber Laser84
5.3.5Output Power of Yb3+Doped Fiber Laser85
References906Broadband Fiber Amplifiers and Sources91
6.1Introduction91
6.2Pr3+Tm3+Er3+CoDoped Fiber System92
6.2.1General Rate and PowerPropagation Equations with Two Wavelength Pumps92
6.2.2Gain Characteristics with 980nm Pump96
6.2.3Gain Characteristics with 793nm Pump99
6.2.4Gain Characteristics with Double Pumps105
6.3Gain Characteristics of Pr3+Er3+CoDoped Fiber System131
6.3.1Rate and PowerPropagation Equations131
6.3.2Dependence of Gain on Fiber Parameters134
6.4WDM Transmission System Cascaded with Tm3+Er3+CoDoped Fiber Amplifiers139
6.4.1WDM System with Single Pump140
6.4.2WDM System with Dual Pumps141
References1437Photonic Glass Waveguide for Spectral Conversion145
7.1Introduction145
7.2Theoretical Model and Spectral Characterization 146
7.2.1Theoretical Model 146
7.2.2Spectral Characterization 148
ContentsixxContents7.3DoublyDoped System 148
7.3.1Energy Transfer Model 149
7.3.2Quantum Efficiency of Photonic Glass Waveguide 152
7.4TriplyDoped System 159
7.4.1Energy Transfer Model 159
7.4.2Quantum Efficiency of Photonic Glass Waveguide 163
7.5Performance Evaluation of scSiSolar Cell with Photonic Glass Waveguides 171
References1748Photonic Glass Waveguide for WhiteLight Generation177
8.1Introduction 177
8.2WhiteLight Glasses 178
8.2.1Tm3 Tb3 Eu3 CoDoped System 178
8.2.2Yb3 Er3 Tm3 CoDoped System 185
8.3EmissionTunable Glasses194
8.3.1Tb3 Sm3 Dy3 CoDoped System 194
8.3.2Tm3 Yb3 Ho3 CoDoped System 205
References214Appendix 1Matlab Code for Solving Nonlinear Rate and Power Propagation Equation
Groups in Co Doped Fiber Amplifiers or Fiber Sources219
A1.1Nonlinear Rate Equation Group and Coupled PowerPropagation
Equation Group of a ThreeActive IonsCoDoped System219
A1.2Code for Solving Linear Rate Equation Group220
A1.3Code for Solving Nonlinear Rate Equation Group220
A1.4Code for Variation of Gain with Fiber Length222
A1.5Code for Variation of Gain with Active Ion Concentration223Appendix 2Matlab Code for Solving PowerPropagation Equations of a Laser
Cavity with FourLevel System225Index228
內容試閱
Luminescence of transition metal ions and rare earth ions has important applications in optoelectronic devices and systems including fiber amplifiers, fiber lasers, and fiber sources. With advances in integrated photonic devices and broadband and compact fiber optic devices, it is necessary to make active fiber devices that have short interaction length and have broadband gain and emission spectra by using high concentration active ion doping and multi active ion doping techniques. For low concentration doped fiber devices, the dependence of emission intensity on excitation power generally is a linear relationship. However, in highly doped and multiply doped fiber devices, the relation is not linear and but nonlinear, due to the interaction between rare earth ions such as upconversion, cross relaxation, energy transfer, and so on. In this book, thus, the active fiber and waveguide devices including high concentration doping and multi rare earth doping are defined as nonlinear emission photonic fiber and waveguide devices.
This book consists of eight parts as follows: 
Chapter 1 introduces the fundamental mathematics of nonlinear emission photonic glass fiber and waveguide devices. In the design and analysis of the photonic glass fiber and waveguide devices, one of most important tasks is to solve a multi variable rate equation group and power propagation equation group. The methods introduced in this chapter are Newton iteration, Runge Kutta algorithms and their combination as well as solution of two point boundary problem, which are effective numerical techniques for highly doped or codoped fiber amplifiers, fiber sources, and fiber laser systems.
Chapter 2 introduces the fundamental of spectral theory of photonic glasses. In this chapter, spectral properties of rare earth doped glasses, including absorption and emission cross sections, spontaneous emission transition probability, fluorescence branch ratio and quantum efficiency, and homogeneous and inhomogeneous broadening of fluorescence spectra and their calculating methods, are summarized.
Chapter 3 systematically reports the spectral properties and laser performance parameters of ytterbium doped glass systems. Ytterbium ions can be used as sensitizers to other active ions due to simple level structure and strong absorption coefficient, ytterbium ion doped fiber can be used as a high power fiber laser system for industrial processing, and ytterbium ion doped glass waveguides can be used as a spectral converter because its emission wavelength matches well with the spectral responsivity of single crystal silicon solar cell.
Chapter 4 presents the modeling and numerical results of compact ytterbium erbium co doped fiber amplifiers, which are supposed to obtain higher internal gain and higher gain per unit length in fiber amplifiers using numerical solutions of rate and evolution equations of signal, pump power, and amplified spontaneous emission.
Chapter 5 introduces the fundamentals of lasers and a numerical model of ytterbium doped glass fiber systems, which can be widely used in industrial processing. Nonlinear interaction between high concentration active ions or the co upconversion effect will degrade these system performances. Our numerical model considers the nonlinear transition in the high concentration doped system and may be used to calculate the threshold power and output power.
Chapter 6 proposes several schemes for all wave fiber transmission systems, including doubly doped fiber amplifiers such as erbium thulium co doped and erbium praseodymium co doped fiber amplifiers and triply doped fiber amplifiers such as erbium thulium praseodymium co doped fiber amplifiers, and presents their numerical models and calculates the dependence of gains at different wavelength on fiber and pump parameters.
Chapter 7 introduces the spectral conversion mechanisms of multi rare earth co doped glass waveguides including the setting up of rate equations and power propagation equations model of several codoped systems. These kinds of photonic glass waveguides are simple applications of spectral downconversion and quantum cutting for enhancing performance of cSi solar cells. The power conversion efficiency and quantum conversion efficiency of the codoped systems are analyzed and the enhanced performances of a scSi solar cell model are evaluated.
Chapter 8 establishes photonic glass waveguide systems for white light generation and presents their numerical models. White light generation has important applications in lighting and display areas. In this chapter, the energy level, electron transition process, and numerical models are proposed and the fluorescence intensity of the system is calculated. Optimal active concentrations are proposed to enable system to emit red, blue, and green light, which are mixed to generate white light.
Some topics in this book appear as color reprints of authors published articles taken, with permission, from various journals, including Journal of Solid State Chemistry, Journal of Luminescence, Material Letters, IEEE Journal of Quantum Electronics, Journal of Optics Society of America, Applied Physics B, IEEE Photonics Journal, and Applied Optics, and so on.
Finally, the writing of this book would not have been possible without the help and encouragement of our many colleagues. It is our great pleasure to thank these people. Especial thanks are given to Mr. Xu Wenbin for his contribution to the part of Chapter 8. Special thanks are given to Ms. Jin Li for her contribution to the part of numerical technique, and to Ms. Xu Wenhui and Mr. Lin Yaming for their contribution to the parts of Chapter 6. We also thank our editors for their encouragement of this project. We thank you, the reader, for your time and effort spent reading this book. Though we tried to cleanse this text of conceptual and typographical errors, we apologize in advance for those that have slipped through. No book is perfect and we can only improve the text with your comments and suggestions.

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.