|
編輯推薦: |
1.作者*近几年与多家企业合作,开展了多项机器学习数据分析的项目,熟悉机器学习的基本原理,并对 TI One、Spark MLlib、TensorFlow 等主流的机器学习工具的安装、配置以及使用过程中的问题比较熟悉,积累了一些详细的分析案例,可以支撑《机器学习实验案例分析》的内容。 2.通过《机器学习实验案例分析》的学习,学生不仅可以模仿实验指导书重复基于 TI One、、Spark MLlib、TensorFlow 的实际数据分析应用,也很容易与一反三,对新问题设计合理的分析思路。 3.作者是国内早期研究商务智能的学者之一(2001 年起),在国内也是较早开设商务智能等数据分析课程(2003 年起),有一定的影响力。商务智能被评为上海市精品课程,获得 2013年高等教育上海市教学成果奖二等奖。 4.通过精心选择数据和应用问题,并设计项目的实验指导书,突出数据分析过程中常遇到的问题,使得学生根据这些材料不仅能消化理解TI One、Spark MLlib、TensorFlow 等主流机器学习平台的原理,还能针对实际问题设计针对可视化分析、机器学习等分析程序,具有较强的实战性。
|
內容簡介: |
机器学习已经广泛地应用于各行各业,深度学习的兴起再次推动了人工智能的热潮。本书结合项目实践,首先讨论了TensorFlow、PySpark、TI-ONE等主流机器学习平台的主要特点;然后结合Tableau介绍了数据可视化在银行客户用卡行为分析的应用。在此基础上,利用上述介绍的这些平台,通过多个项目案例,详细地分析了决策树、随机森林、支持向量机、逻辑回归、贝叶斯网络、卷积神经网络、循环神经网络、对抗生成网络等机器学习算法在金融、商业、汽车、电力等领域的应用。 本书内容深入浅出,提供了详细的 Python 代码,既可以作为从事机器学习、数据挖掘的相关研究人员的参考书,也可以作为高校相关专业机器学习、数据挖掘等课程的实验和实训教材。
|
關於作者: |
复旦大学计算机科学技术学院副教授,博士。主要研究方向为商务数据分析和大数据分析。2015年度上海市科技进步二等奖获得者。主持的商务智能课程被评为上海市精品课程,并获得2013年度上海市高等教育教学成果二等奖。主持完成国家自然科学基金、上海市浦江人才及企业合作课题等20多个项目。在国内外期刊和相关学术会议发表论文90多篇。出版多本教材和专著
|
|