新書推薦:
《
舍不得星星:全2册
》
售價:NT$
356.0
《
汉字理论与汉字阐释概要 《说解汉字一百五十讲》作者李守奎新作
》
售價:NT$
347.0
《
汗青堂丛书144·决战地中海
》
售價:NT$
765.0
《
逝去的武林(十周年纪念版 武学宗师 口述亲历 李仲轩亲历一九三零年代武人言行录)
》
售價:NT$
250.0
《
唐代冠服图志(百余幅手绘插画 图解唐代各类冠服 涵盖帝后 群臣 女官 士庶 军卫等 展现唐代社会风貌)
》
售價:NT$
398.0
《
知宋·宋代之科举
》
售價:NT$
454.0
《
那本书是(吉竹伸介与又吉直树 天才联动!)
》
售價:NT$
454.0
《
传播的跃迁:人工智能如何革新人类的交流
》
售價:NT$
505.0
|
編輯推薦: |
《MATLAB神经网络43个案例分析》详细论述了在MATLAB环境下如何实现神经网络,包括了常用的神经网络及相关理论,以及各种优化算法与神经网络的结合。考虑到MATLAB R2012b版本中神经网络工具箱作了更新,本书也新增了神经网络并行运算、定制神经网络、神经网络高效编程等章节,非常适合中高级神经网络研究人员参考。 作为众多宣讲MATLAB家族产品丛书中的一个系列,该书的*特点是接地气,实用性强。四位作者都是长期活跃在MATLAB技术论坛的版主,每天都会在线解答MATLAB特别是针对神经网络的问题,积累了丰富的使用经验。本书所举例的43个案例,部分来源于各大公司、院校的科研课题,也有一部分来源于MATLAB技术论坛的会员提问。这些案例代表了神经网络在各个领域的相关应用,读者可以根据自己研究问题的需要,*时间找到适合自己学习的神经网络章节,进行阅读。
|
內容簡介: |
《MATLAB神经网络43个案例分析》是在《MATLAB神经网络30个案例分析》的基础上修改、补充而成的,秉承着理论讲解案例分析应用扩展这一特色,帮助读者更加直观、生动地学习神经网络。《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析》还介绍了MATLAB R2012b中神经网络工具箱的新增功能与特性,如神经网络并行计算、定制神经网络、神经网络高效编程等。
使用《MATLAB神经网络43个案例分析》时,建议读者按照先通读章节内容,后调试程序,再精读章节内容的顺序学习。《MATLAB神经网络43个案例分析》程序建议在MATLAB R2009a及以上版本环境下运行。若在程序调试过程中有任何疑问,建议先在论坛书籍答疑版块搜索相关答案,然后再发帖与作者交流。
《MATLAB神经网络43个案例分析》可作为高等学校相关专业学生本科毕业设计、研究生课题研究的参考书籍,亦可供相关专业教师教学参考。
《MATLAB神经网络43个案例分析》是在《MATLAB神经网络30个案例分析》的基础上修改、补充而成的,秉承着理论讲解案例分析应用扩展这一特色,帮助读者更加直观、生动地学习神经网络。 《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析》还介绍了MATLABR2012b中神经网络工具箱的新增功能与特性,如神经网络并行计算、定制神经网络、神经网络高效编程等。
使用《MATLAB神经网络43个案例分析》时,建议读者按照先通读章节内容,后调试程序,再精读章节内容的顺序学习。《MATLAB神经网络43个案例分析》程序建议在MATLABR2009a及以上版本环境下运行。若在程序调试过程中有任何疑问,建议先在论坛书籍答疑版块搜索相关答案,然后再发帖与作者交流。
《MATLAB神经网络43个案例分析》可作为高等学校相关专业学生本科毕业设计、研究生课题研究的参考书籍,亦可供相关专业教师教学参考。
|
目錄:
|
第1章BP神经网络的数据分类语音特征信号分类
1.1案例背景
1.1.1BP神经网络概述
1.1.2语音特征信号识别
1.2模型建立
1.3MATLAB实现
1.3.1归一化方法及MATLAB函数
1.3.2数据选择和归一化
1.3.3BP神经网络结构初始化
1.3.4BP神经网络训练
1.3.5BP神经网络分类
1.3.6结果分析
1.4案例扩展
1.4.1隐含层节点数
1.4.2附加动量方法
1.4.3变学习率学习算法
参考文献
第2章BP神经网络的非线性系统建模非线性函数拟合
2.1案例背景
2.2模型建立
2.3MATLAB实现
2.3.1BP神经网络工具箱函数
2.3.2数据选择和归一化
2.3.3BP神经网络训练
2.3.4BP神经网络预测
2.3.5结果分析
2.4案例扩展
2.4.1多隐含层BP神经网络
2.4.2隐含层节点数
2.4.3训练数据对预测精度影响
2.4.4节点转移函数
2.4.5网络拟合的局限性
参考文献
第3章遗传算法优化BP神经网络非线性函数拟合
3.1案例背景
3.1.1遗传算法原理
3.1.2遗传算法的基本要素
3.1.3拟合函数
3.2模型建立
3.2.1算法流程
3.2.2遗传算法实现
3.3编程实现
3.3.1适应度函数
3.3.2选择操作
3.3.3交叉操作
3.3.4变异操作
3.3.5遗传算法主函数
3.3.6遗传算法优化的BP神经网络函数拟合
3.3.7结果分析
3.4案例扩展
3.4.1其他优化方法
3.4.2网络结构优化
3.4.3算法的局限性
参考文献
第4章神经网络遗传算法函数极值寻优非线性函数极值寻优
4.1案例背景
4.2模型建立
4.3编程实现
4.3.1BP神经网络训练
4.3.2适应度函数
4.3.3遗传算法主函数
4.3.4结果分析
4.4案例扩展
4.4.1工程实例
4.4.2预测精度探讨
参考文献
第5章基于BP_Adaboost的强分类器设计公司财务预警建模
5.1案例背景
5.1.1BP_Adaboost模型
5.1.2公司财务预警系统介绍
5.2模型建立
5.3编程实现
5.3.1数据集选择
5.3.2弱分类器学习分类
5.3.3强分类器分类和结果统计
5.3.4结果分析
5.4案例扩展
5.4.1数据集选择
5.4.2弱预测器学习预测
5.4.3强预测器预测
5.4.4结果分析
参考文献
第6章PID神经元网络解耦控制算法多变量系统控制
6.1案例背景
6.1.1PID神经元网络结构
6.1.2控制律计算
6.1.3权值修正
6.1.4控制对象
6.2模型建立
6.3编程实现
6.3.1PID神经网络初始化
6.3.2控制律计算
6.3.3权值修正
6.3.4结果分析
6.4案例扩展
6.4.1增加动量项
6.4.2神经元系数
6.4.3PID神经元网络权值优化
参考文献
第7章RBF网络的回归非线性函数回归的实现
第8章GRNN的数据预测基于广义回归神经网络的货运量预测
第9章离散Hopfield神经网络的联想记忆数字识别
第10章离散Hopfield神经网络的分类高校科研能力评价
第11章连续Hopfield神经网络的优化旅行商问题优化计算
第12章初识SVM分类与回归
第13章LIBSVM参数实例详解
第14章基于SVM的数据分类预测意大利葡萄酒种类识别
第15章SVM的参数优化如何更好地提升分类器的性能
第16章基于SVM的回归预测分析上证指数开盘指数预测
第17章基于SVM的信息粒化时序回归预测上证指数开盘指数变化趋势和变化空间预测
第18章基于SVM的图像分割真彩色图像分割
第19章基于SVM的手写字体识别
第20章LIBSVMFarutoUltimate工具箱及GUI版本介绍与使用
第21章自组织竞争网络在模式分类中的应用患者癌症发病预测
第22章SOM神经网络的数据分类柴油机故障诊断
第23章Elman神经网络的数据预测电力负荷预测模型研究
第24章概率神经网络的分类预测基于PNN的变压器故障诊断
第25章基于MIV的神经网络变量筛选基于BP的神经网络变量筛选
第26章LVQ神经网络的分类乳腺肿瘤诊断
第27章LVQ神经网络的预测人脸朝向识别
第28章决策树分类器的应用研究乳腺癌诊断
第29章极限学习机在回归拟合及分类问题中的应用研究对比实验
第30章基于随机森林思想的组合分类器设计乳腺癌诊断
第31章思维进化算法优化BP神经网络非线性函数拟合
第32章小波神经网络的时间序列预测短时交通流量预测
第33章模糊神经网络的预测算法嘉陵江水质评价
第34章广义神经网络的聚类算法网络入侵聚类
第35章粒子群优化算法的寻优算法非线性函数极值寻优
第36章遗传算法优化计算建模自变量降维
第37章基于灰色神经网络的预测算法研究订单需求预测
第38章基于Kohonen网络的聚类算法网络入侵聚类
第39章神经网络GUI的实现基于GUI的神经网络拟合、模式识别、聚类
第40章动态神经网络时间序列预测研究基于MATLAB的NARX实现
第41章定制神经网络的实现神经网络的个性化建模与仿真
第42章并行运算与神经网络基于CPUGPU的并行神经网络运算
第43章神经网络高效编程技巧基于MATLABR2012b新版本特性的探讨
|
內容試閱:
|
很荣幸受好友王小川之邀,并代表MathWorks公司为其新书《MATLAB神经网络43个案例分析》(《MATLAB神经网络30个案例分析》的升级版本)作序,同时也感谢该书四位才华横溢的青年才俊这几年来对MATLAB软件应用(尤其是在神经网络方面)所做的持续的推广工作。 我与这四位作者的结缘,与众多编著MATLAB丛书的作者相识过程类似,完全是因为热爱MATLAB产品。尤其是王小川,他不仅在论坛、微博里充满能量,而且他的数据挖掘公开课也令人称道,在MATLAB粉丝中有着很大的影响力。此次他集合原书作者,针对读者就原书中的书籍案例和写作上所提出的意见和建议,进行了大幅升级,终于完成了这本《MATLAB神经网络43个案例分析》的编写。
《MATLAB神经网络43个案例分析》详细论述了在MATLAB环境下如何实现神经网络,包括了常用的神经网络及相关理论,以及各种优化算法与神经网络的结合。考虑到MATLABR2012b版本中神经网络工具箱作了更新,《MATLAB神经网络43个案例分析》也新增了神经网络并行运算、定制神经网络、神经网络高效编程等章节,非常适合中高级神经网络研究人员参考。
作为众多宣讲MATLAB家族产品丛书中的一个系列,该书的最大特点是接地气,实用性强。四位作者都是长期活跃在MATLAB技术论坛的版主,每天都会在线解答MATLAB特别是针对神经网络的问题,积累了丰富的使用经验。《MATLAB神经网络43个案例分析》所举例的43个案例,部分来源于各大公司、院校的科研课题,也有一部分来源于MATLAB技术论坛的会员提问。这些案例代表了神经网络在各个领域的相关应用,读者可以根据自己研究问题的需要,第一时间找到适合自己学习的神经网络章节,进行阅读。
因此我相信此书的出版,必将大大加速各位神经网络使用人员的学习进度,提升大家的工程应用能力。在此我郑重向大家推荐此书。
|
|