J. A. del Alamo任教于MIT电气工程与计算机科学系,电气工程教授,Donner教授。同时担任MIT的微系统技术实验室主任。他在马德里政治大学(西班牙)获得电信工程师学位,并于斯坦福大学获得电气工程的硕士和博士学位。一直以来,del Alamo教授从事于不同材料系统中晶体管和其他电子设备的研究,如硅基太阳能电池、硅基双极结晶体管、硅基MOSFET、基于锗硅的异质结构器件、基于砷化镓的假型高电子迁移率晶体管(PHEMT)、基于铟镓砷的高电子迁移率晶体管(HEMT)和MOSFET、基于铟镓锑的HEMT和MOSFET、基于氮化镓的HEMT和MOSFET以及近期研究的基于金刚石的MOSFETs等。
邹卫文,上海交通大学教授、博导。电子信息与电气工程学院电子工程系副系主任。IEEE高级会员,OSA高级会员。2002年和2005年分别获上海交通大学物理学士和硕士学位,2008年获日本东京大学电子工程系博士学位。2008年至2010年先后任职于日本东京大学博士后研究员、特任助理教授。2010年4月起任上海交通大学副教授,2016年1月起任上海交通大学教授。获上海市浦江人才计划,上海交通大学SMC-晨星计划(A类B类)。作为项目负责人承担了6项国家级项目,还与中电集团、航天集团等开展系列合作。在光电子专业顶级SCI期刊发表论文65篇,在OFC、CLEO等国际会议上做邀请或口头报告50多次;已授权国家发明专利13项、美国专利3项。
目錄:
1Electrons, Photons, and Phonons电子、光子和声子
1.1Selected Concepts of Quantum Mechanics量子力学的基本概念
1.1.1The dual nature of the photon光子的二重性
1.1.2The dual nature of the electron电子的二重性
1.1.3Electrons in confined environments密闭环境中的电子特性
1.2Selected Concepts of Statistical Mechanics统计力学的基本概念
1.2.1Thermal motion and thermal energy热运动和热能
1.2.2Thermal equilibrium热平衡
1.2.3Electron statistics电子统计特性
1.3Selected Concepts of Solid-State Physics固体物理的基本概念
1.3.1Bonds and bands化学键和能带
1.3.2Metals, insulators, and semiconductors金属、绝缘体和半导体
1.3.3Density of states 态密度
1.3.4Lattice vibrations: phonons晶格振动:声子
1.4Summary小结
1.5Further reading延展阅读
Problems习题
2Carrier Statistics in Equilibrium平衡状态下的载流子统计特性
2.1Conduction and Valence Bands; Bandgap; Holes导带和价带,带隙,空穴
2.2Intrinsic Semiconductor本征半导体
2.3Extrinsic Semiconductor非本征半导体
2.3.1Donors and acceptors施主和受主
2.3.2Charge neutrality电中性特点
2.3.3Equilibrium carrier concentration in a doped semiconductor掺杂半导体中的平衡载流子浓度
2.4Carrier Statistics in Equilibrium平衡状态下的载流子统计特性
2.4.1Conduction and valence band density of states导带和价带的态密度
2.4.2Equilibrium electron concentration平衡电子浓度
2.4.3Equilibrium hole concentration平衡空穴浓度
2.4.4np product in equilibrium平衡状态下的np积
2.4.5Location of Fermi level费米能级的位置
2.5Summary小结
2.6Further Reading延展阅读
AT2.1Temperature Dependence of the Bandgap带隙的温度依存性
AT2.2Selected Properties of the Fermi-Dirac Integral费米?C狄拉克积分的基本特性
AT2.3Approximations for Strongly Degenerate Semiconductor强简并半导体的数学近似
AT2.4Statistics of Donor and Acceptor Ionization施主和受主电离的数学统计
AT2.5Carrier Freeze-Out载流子束缚态
AT2.6Heavy-Doping Effects重掺杂效应
AT2.6.1The Mott transitionMott转移
AT2.6.2Bandgap narrowing带隙变窄
Problems习题
3Carrier Generation and Recombination载流子的产生与复合
3.1Generation and Recombination Mechanisms产生与复合机制
3.2Thermal Equilibrium: Principle of Detailed Balance热平衡:精细平衡原理
3.3Generation and Recombination Rates in Thermal Equilibrium热平衡下的产生率与复合率
3.3.1Band-to-band optical generation and recombination带间光产生和光复合
3.3.2Auger generation and recombination俄歇产生与复合
3.3.3Trap-assisted thermal generation and recombination陷阱辅助的热产生与复合
3.4Generation and Recombination Rates Outside Equilibrium非平衡条件下的产生与复合
3.4.1Quasi-neutral low-level injection; recombination lifetime准中性低浓度注入,复合寿命
3.4.2Extraction; generation lifetime提取和产生寿命
3.5Dynamics of Excess Carriers in Uniform Situations均匀条件下的过剩载流子动力学
3.5.1Example 1: Turn-on transient例1:开瞬态
3.5.2Example 2: Turn-off transient例2:关瞬态
3.5.3Example 3: A pulse of light例3:一个光脉冲
3.6Surface Generation and Recombination表面产生与复合
3.7Summary小结
3.8Further Reading延展阅读
AT3.1Shockley?CRead?CHall Model肖克利?C里德?C霍尔模型
AT3.1.1Recombination lifetime复合寿命
AT3.1.2Generation lifetime产生寿命
AT3.2High-Level Injection高浓度注入
Problems习题
4Carrier Drift and Diffusion载流子的漂移和扩散
4.1Thermal Motion热运动
4.1.1Thermal velocity热运动速率
4.1.2Scattering散射
4.2Drift漂移
4.2.1Drift velocity漂移速率
4.2.2Velocity saturation速率饱和
4.2.3Drift current漂移电流
4.2.4Energy band diagram under electric field电场作用下的能带图
4.3Diffusion扩散
4.3.1Ficks first law菲克第一定律
4.3.2The Einstein relation爱因斯坦关系
4.3.3Diffusion current扩散电流
4.4Transit Time渡越时间
4.5Nonuniformly Doped Semiconductor in Thermal Equilibrium热平衡下的非均匀掺杂半导体
4.5.1Gausslaw高斯定律
4.5.2The Boltzmann relations玻尔兹曼关系
4.5.3Equilibrium carrier concentration平衡载流子浓度
4.6Quasi-Fermi Levels and Quasi-Equilibrium准费米能级与准平衡态
4.7Summary小结
4.8Further Reading延展阅读
AT4.1Selected Properties of the Gamma Function伽马函数的基本性质
AT4.2Hot Carrier Effects热载流子效应
AT4.2.1Energy relaxation versus momentum relaxation能量弛豫和动量弛豫
AT4.2.2Hot-electron transport热电子输运
AT4.2.3Impact ionization碰撞电离
Problems习题
5Carrier Flow载流子运动
5.1Continuity Equations连续性方程
5.2Surface Continuity Equations表面连续性方程
5.2.1Free surface自由表面
5.2.2Ohmic contact欧姆接触
5.3Shockley Equations肖克利公式
5.4Simplifications of Shockley Equations to One-Dimensional Quasi-Neutral Situations一维准中性条件下的肖克利公式简化
5.5Majority Carrier Situations多数载流子
5.5.1Example 1: Semiconductor bar under voltage例1:电压下的半导体棒
5.5.2Example 2: Integrated resistor例2:集成电阻
5.6Minority Carrier Situations少数载流子
5.6.1Example 3: Diffusion and bulk recombination in a long bar例3:长棒中的扩散和体复合
5.6.2Example 4: Diffusion and surface recombination in a short bar例4:短棒中的扩散和表面复合
5.6.3Length scales of minority carrier situations少数载流子的长度效应
5.7Dynamics of Majority Carrier Situations多数载流子的动力学特性
5.8Dynamics of Minority Carrier Situations少数载流子的动力学特性
5.8.1Example 5: Transient in a bar with S=例5:S=时,半导体棒的瞬态特性
5.9Transport in Space-Charge and High-Resistivity Regions空间电荷和高阻区中的输运
5.9.1Example 6: Drift in a high-resistivity region under external electric field例6:外电场作用下的高阻区漂移
5.9.2Comparison between SCR and QNR transport空间电荷区(SCR)与准中性区(QNR)输运的比较
5.10Carrier Multiplication and Avalanche Breakdown载流子倍增和雪崩击穿
5.10.1Example 7: Carrier multiplication in a high-resistivity region with uniform electric field例7:均匀电场作用下的高阻区载流子倍增
5.11Summary小结
5.12Further Reading延展阅读
AT5.1Continuity Equations in Integral Form积分形式的连续方程
AT5.2Dielectric Relaxation介电弛豫
AT5.3Advanced Topics Regarding Minority Carrier Situations少数载流子条件下的复杂难题
AT5.3.1Advanced Example 1: Diffusion, drift, and recombination in a short bar with internal field难题示例1:内电场作用下的短棒半导体中的载流子漂移、扩散和复合
AT5.3.2More on length scales of minority carrier situations少数载流子条件下的长度效应
AT5.3.3Advanced Example 2: Transient in a bar with finite surface recombination难题示例2:有限表面复合下的棒状半导体瞬态特性
AT5.4Carrier Multiplication and Avalanche Breakdown Under Nonuniform Electric Field非均匀电场作用下的载流子倍增和雪崩击穿
Problems习题
6PN Junction Diodepn结二极管
6.1The Ideal PN Junction Diode理想pn结二极管
6.2Ideal PN Junction in Thermal Equilibrium热平衡下的理想pn结二极管
6.3Current?CVoltage Characteristics of the Ideal PN Diode理想pn结二极管的电流?C电压特性
6.3.1Electrostatics under bias偏置电压作用下的静电学特性
6.3.2I-V characteristics: qualitative discussionI-V 特性:定性讨论
6.3.3I-V characteristics: quantitative modelsI-V 特性:定量模型
6.4Charge?CVoltage Characteristics of Ideal PN Diode理想pn结二极管的电荷?C电压特性
6.4.1Depletion charge耗尽电荷
6.4.2Minority carrier charge少数载流子电荷
6.5Equivalent Circuit Models of the Ideal PN Diode理想pn结二极管的等效电路模型
6.6Nonideal and Second-Order Effects非理想条件和二阶效应
6.6.1Short diode短二极管
6.6.2Space-c
內容試閱:
Preface
Judging by its age, now beyond 50 years old, one would think that microelectronics is a mature engineering discipline. Yet, its youthful exponential growth and its dramatic impact on human society continue unabated. For those of us that have been given the privilege of playing a role in this amazing endeavor, it has been an exhilarating experience. For years it was predicted that the relentless down scaling of transistor dimensions will hit a fundamental limit beyond which traditional device physics will be irreparably upset and progress will stall. Fortunately, semiconductor technologists and device engineers have been too busy to listen to the doomsayers. Innovative solutions to the challenges that continued to emerge were identified. Old taboos and preconceptions had to go by the wayside, and new materials needed to be brought to bear but progress never slowed down. The microelectronics revolution is perhaps the best exponent of human creativity and resourcefulness that there has ever been.
While recently, expressions of concern about the impending end of Moores Law have grown louder and the path forward with transistor scaling is not entirely apparent, it is very clear that CMOS complementary metaloxide semiconductor, a logic circuit family based on metaloxidesemiconductor field-effect transistors in whatever form it will take, will continue to be the backbone of computation, communications, power management, medical devices and many other kinds of systems for years to come. Also clear is that going forward, a richer set of technological options will need to be investigated: new materials, new structures, new geometries, and even new physics. In this context, indepth understanding of semiconductor fundamentals and device physics will be more valuable than ever.
It is in this regard that this book attempts to fill an important gap in the academic literature. While there are excellent texts on semiconductor device physics in themarket, there is a need for a rigorous description that is relevant to modern nanoelectronics. In recent times, for instance, the so-called extrinsic effects or parasitics have come to play a dominant role in device operation. Moreover, device physics such as impact ionization and breakdown represent significant considerations in nanoscale device design. Another example is the role of device layout on device performance metrics that is of increasing relevance. This book additionally aims to provide a realistic technology context for the main streamdevices: the metaloxidesemiconductor field-effect transistor MOSFET and the bipolar junction transistor BJT.
This book is based on my experience in teaching 6.720J3.43J Integrated Microelectronic Devices, a semester-long graduate student subject jointly offered in the Departments of Electrical Engineering and Computer Science EECS and Materials Science and Engineering MS&E at Massachusetts Institute of Technology MIT. Typically, the class is composed of graduate students in EECS, Materials Science, Mechanical Engineering, Chemical Engineering and Physics plus a few seniors in the same departments. Graduate students in EECS and MS&E with interest in semiconductor materials and devices are strongly encouraged to take this subject their very first semester at MIT. While the book originated in a graduate course at MIT, it has been constructed to be productively used in an advanced undergraduate subject at the juniorsenior level, as explained below.
The central goal of this book is to present the fundamentals of semiconductor device operation with relevance to modern integrated microelectronics as opposed to, say, photonics, energy conversion devices, or power electronics. This means that no optical devices nor power devices of any kind are described. In contrast, emphasis is devoted to frequency response, layout, geometrical effects, parasitic issues and modeling in integrated microelectronics devices transistors and diodes. In spite of this focus, the concepts learned here are highly applicable in other device con