登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』基于链路预测的推荐系统:原理、模型与算法

書城自編碼: 3274309
分類: 簡體書→大陸圖書→計算機/網絡程序設計
作者: 朱旭振
國際書號(ISBN): 9787563554867
出版社: 北京邮电大学出版社有限公司
出版日期: 2018-08-01


書度/開本: 16开 釘裝: 平装

售價:NT$ 247

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
人民币国际化报告2024:可持续全球供应链体系与国际货币金融变革
《 人民币国际化报告2024:可持续全球供应链体系与国际货币金融变革 》

售價:NT$ 398.0
道德经新注 81幅作者亲绘哲理中国画,图文解读道德经
《 道德经新注 81幅作者亲绘哲理中国画,图文解读道德经 》

售價:NT$ 653.0
清俗纪闻
《 清俗纪闻 》

售價:NT$ 449.0
镜中的星期天
《 镜中的星期天 》

售價:NT$ 347.0
世界前沿技术发展报告2024
《 世界前沿技术发展报告2024 》

售價:NT$ 857.0
可转债——新手理财的极简工具
《 可转债——新手理财的极简工具 》

售價:NT$ 296.0
新加坡教育:神话与现实
《 新加坡教育:神话与现实 》

售價:NT$ 439.0
“口袋中的世界史”第一辑·冷战中的危机事件
《 “口袋中的世界史”第一辑·冷战中的危机事件 》

售價:NT$ 1326.0

編輯推薦:
本书从单一节点网络上的链路预测研究入手,研究端点间影响相似性的拓扑因素,并进一步基于超图理论和物质扩散理论,将研究结果扩展至对二部图上物品间的链路预测建模,发现物品间的相似性,结合协作技术完成推荐。本书首先介绍基础知识,使得读者对复杂网络有基本的认识,并介绍复杂网络分析工具Pajek;其次介绍一般网络上单一节点间的链路预测研究;接着介绍了二部图上基于链路预测的协作推荐研究;*后进行总结并展望未来的研究方向。本书采用问题描述、理论建模、数据仿真、性能计算的方法介绍各个实例的研究思路,通过作者的研究举例,针对每个研究点介绍研究方法,并给出此项研究的参考文献,同时引导读者思考未来可能的研究思路。通过介绍各个研究案例,可以帮助读者快速进入未来的研究课题。
內容簡介:
飞速发展的计算机、互联网和web技术改变了人们的生活,人们在虚拟社区中结交好友、在新闻网站中浏览新闻、在视频网站中观看电影、在虚拟图书馆中查阅书籍、在电商平台中购买物品。但是,人们在享受多彩生活的同时也感受到了信息膨胀带来的烦恼,即人们无法在海量数据中快速有效地找到*相关的信息。电影、书籍、网页等信息的数据量动辄以千万级,这些数据信息的增长速度已经远远超过了人类的自然处理能力。在这种大数据的背景下,用户获取所需信息的代价越来越大,仅仅依靠传统人力的方式已经无法评价和选择这些物品。在这种情况下,有效过滤海量信息的*有吸引力的方法就是个性化推荐技术。它利用用户个人信息,例如用户活动的历史记录,发现用户喜好,然后根据用户喜好进行推荐,例如Amazon.com使用用户的购买历史记录向用户推荐书籍,AdaptiveInfo.com使用用户的阅读历史向用户推荐新闻,还有TiVo数字视频系统根据用户的观看模式和评分记录向用户推荐电视节目。

本研究从单一节点网络上的链路预测研究入手,研究二部图网络上的链路预测,建模物品之间的相似性,结合协作技术完成推荐。首先,介绍一般网络上基于拓扑相似性的链路预测算法研究,进一步分别从路径有效性和端点影响力角度出发,研究端点间相似性模型。其次,应用超图理论和物质扩散理论,将一般网络上的链路预测算法扩展到二部图上,预测物品间相似性,然后基于协作过滤算法,实现物品推荐。*后,本研究给出了进行链路预测研究的一般方法、数据来源、数据处理方法、实验方法以及Matlab实现代码,同时给出了二部图网络上推荐研究的一般方法、数据来源、数据处理方法、实验方法以及Matlab实现代码。以期能帮助大家尽快熟悉,为进一步深入研究做好铺垫。
關於作者:
朱旭振,男,讲师。2015年毕业于北京邮电大学通信与信息系统专业,获得博士学位。专注于大数据环境下的链路预测、推荐系统以及复杂网络上的传播动力学,主持一项国家自然科学基金项目,并参与多项863项目和国家自然科学基金项目。负责多项数据挖掘和分析项目,发表论文多篇。研究方向:大数据环境下的数据挖掘与传播动力学研究。
目錄
第1部分基础知识
第1章绪论
11研究背景
111推荐系统的发展现状及特征分析

112推荐系统的国内外研究现状
12相关理论基础
121复杂网络理论基础
122链路预测理论

123基于链路预测的协同推荐理论
13复杂网络下基于链路预测推荐所面临的问题及研究意义
131面临的问题

132研究意义
14研究思路
15本书的主要内容
本章参考文献
第2部分复杂网络上的链路预测方法

第2章网络分析软件Pajek
21Pajek软件介绍
211高速计算
212可视化
213抽象化

22Pajek软件使用基础
23Pajek软件分析网络属性
231度的计算
232两点间的距离

233k近邻
234聚类系数
24Pajek软件抽取极大连通子图
25Pajek软件网络画图

251绘制复杂网络图
252绘制不同类节点的复杂网络图
253绘制不同大小节点的复杂网络图

254绘制不同权值边的复杂网络图
26网络文件net简介
261Pajek网络文件的一般结构

262具体参数的意义和取值
263文件举例
2.7本章小结
本章参考文献
第3章基于相似性的链路预测研究

31链路预测的研究方法
32链路预测的典型研究成果
33链路预测的实验数据
34链路预测的实验方法

341数据集划分方法
342链路预测的度量指标
35链路预测重要代码讲解
351数据集划分代码讲解

352关键测试指标代码讲解
36基于拓扑相似性链路预测的思考
37本章小结
本章参考文献

第4章基于弱关系的链路预测算法
41研究背景
42问题描述
43基于弱关系的优化链路预测模型

431CN算法、AA算法和RA算法介绍
432改进优化算法模型
44实验结果与分析
441数据集

442度量指标
443结果与分析
45本章小结
46研究思考
本章参考文献

第5章基于路径异构性的链路预测算法
51研究背景
52问题描述
53基于路径异构性的链路预测建模

531SP模型
532对比算法
54实验结果与分析
541数据集
542评估准则

543结果与分析
55本章小结
56研究思考
本章参考文献
第6章基于端点影响力的链路预测算法

61研究背景
62问题描述
63基于端点影响力建立链路预测模型
631EP模型
632对比算法

64实验结果与分析
641数据集
642评估准则
643结果与分析
65本章小结
66研究思考

本章参考文献
第3部分基于链路预测的推荐算法研究
第7章推荐模型的研究方法
71推荐模型常见研究方法

72基于链路预测的推荐模型研究方法
73推荐技术的典型研究成果
74推荐技术的研究数据介绍
75推荐实验方法

751数据集划分方法
752推荐算法的度量指标
76推荐算法重要代码讲解
761数据集划分代码讲解

762推荐算法关键指标代码讲解
77基于二部图推荐算法的研究思路
78本章小结
本章参考文献

第8章基于修正相似性的协作推荐算法
81研究背景
82问题描述
83基于修正相似性的推荐算法CSI

831基于二部图网络的经典相似性算法
832相似性修正模型CSI
833对比算法
84实验结果与分析

841数据集
842评价准则
843结果与分析
85本章小结
86研究思考
本章参考文献

第9章基于一致性的协作推荐算法
91研究背景
92问题描述
93基于一致性的推荐算法CBI

931基于网络的因果性推荐算法NBI
932基于一致性的推荐算法CBI和UCBI
933对比算法

94实验结果与分析
941数据集
942评价准则
943结果与分析
95本章小结
96研究思考

本章参考文献
第10章基于一致性冗余删除的协作推荐算法
101研究背景
102问题描述
103修正冗余删除推荐算法

1031相似性估计偏差现象
1032相似性冗余问题
1033修正冗余删除相似性指标CRE
1034对比算法

104实验结果与分析
1041数据集
1042评价准则
1043结果与分析
105本章小结

106研究思考
本章参考文献
第11章一致性下基于惩罚过度扩散的推荐算法
111研究背景
112问题描述

113对称和过度扩散惩罚算法模型
1131非对称扩散问题
1132扩散冗余问题
1133基于对称的过度扩散惩罚模型

1134对比算法
114实验结果与分析
1141数据集
1142评价准则
1143结果与分析

115本章小结
116研究思考
本章参考文献
第4部分总结与未来展望
第12章总结和展望

121总结
122未来研究展望

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.