Chapter 1Introduction of Fluid Mechanics1 1.1Brief History of Fluid Mechanics1 1.2Dimensions and Units4 1.2.1Dimensions4 1.2.2Units8 1.3Definition of a Fluid10 1.3.1Continuity Hypothesis10 1.3.2Density12 1.3.3Specific Weight13 1.3.4Specific Gravity14 1.4Fluid Properties14 1.4.1Compressibility14 1.4.2Surface Tension17 1.4.3Viscosity20 第1章流体力学简介1 1.1流体力学简史1 1.2量纲和单位4 1.2.1量纲4 1.2.2单位8 1.3流体的定义10 1.3.1连续性假设10 1.3.2密度12 1.3.3重度13 1.3.4比重14 1.4流体性质14 1.4.1可压缩性14 1.4.2表面张力17 1.4.3黏度20 Chapter 2Fluid Statics27 2.1Pressure at a Point27 2.2Basic Equation for Pressure Field28 2.3Pressure Variation in a Fluid at Rest31 2.3.1Incompressible Fluid31 2.3.2Compressible Fluid34 2.4Standard Atmosphere35 2.5Buoyancy and Stability37 2.5.1Archimedes’ Principle37 2.5.2Stability40 2.6Measurement of Pressure42 2.7Manometry44 2.7.1Piezometer Tube45 2.7.2U-Tube Manometer46 2.7.3InclinedTube Manometer50 第2章流体静力学27 2.1某一点的压力27 2.2压力场基本方程28 2.3静止流体中的压力变化31 2.3.1不可压缩流体31 2.3.2可压缩流体34 2.4标准大气35 2.5浮力和稳定性37 2.5.1阿基米德原理37 2.5.2稳定性40 2.6压力的测量42 2.7压力测量法44 2.7.1测压管45 2.7.2U形管压力计46 2.7.3倾斜管压力计50 Chapter 3Fluid Kinematics54 3.1The Velocity Field54 3.1.1Eulerian method and Lagrangian method55 3.1.2One-,Two- and Three-Dimensional Flows56 3.1.3Steady and Unsteady Flows57 3.1.4Streamlines,Streaklines and Pathlines58 3.2The Acceleration Field60 3.2.1The Material Derivative60 3.2.2Unsteady Effects62 3.2.3Convective Effects63 3.3Fluid Element Kinematics65 3.3.1Linear Motion and Deformation66 3.3.2Angular Motion and Deformation67 3.4System and Control Volume69 3.5Reynolds Transport Theorem71 3.5.1Derivation of the Reynolds Transport Theorem73 3.5.2Relationship Between Reynolds transport theorem and Material Derivative78 第3章流体运动学54 3.1速度场54 3.1.1欧拉法和拉格朗日法55 3.1.2一维、二维和三维流动56 3.1.3定常和非定常流动57 3.1.4流线、纹线和迹线58 3.2加速度场60 3.2.1物质导数60 3.2.2非定常作用62 3.2.3对流作用63 3.3流体微团运动65 3.3.1线运动和变形66 3.3.2角运动和变形67 3.4系统和控制体69 3.5雷诺输运定理71 3.5.1雷诺输运定理的推导73 3.5.2雷诺输运定理与物质导数的关系78 Chapter 4Finite Control Volume Analysis of Fluid Flow82 4.1The Continuity Equation82 4.1.1Derivation of the Continuity Equation82 4.1.2Application of the Continuity Equation85 4.2The Momentum Equation88 4.2.1Derivation of the Momentum Equation88 4.2.2Application of the Momentum Equation89 4.3Moment-of-Momentum Equation91 4.3.1Derivation of the Moment-of-Momentum Equation91 4.3.2Application of the Moment-of-Momentum Equation93 4.4The Energy Equation96 4.4.1Derivation of the Energy Equation96 4.4.2Application of the Energy Equation98 4.4.3The Bernoulli Equation100 第4章流体流动的有限控制体分析82 4.1连续性方程82 4.1.1连续性方程的推导82 4.1.2连续性方程的应用85 4.2动量方程88 4.2.1动量方程的推导88 4.2.2动量方程的应用89 4.3动量矩方程91 4.3.1动量矩方程的推导91 4.3.2动量矩方程的应用93 4.4能量方程96 4.4.1能量方程的推导96 4.4.2能量方程的应用98 4.4.3伯努利方程100 Chapter 5Differential Analysis of Fluid Flow108 5.1Conservation of Mass108 5.1.1Continuity Equation in Differential Form109 5.1.2Continuity Equation in Cylindrical Coordinates112 5.2Conservation of Momentum112 5.2.1Forces Acting on the Differential Element113 5.2.2Equations of Motion116 5.3Viscous Flow118 5.3.1Stress-Deformation Relationships118 5.3.2The NaiverStokes Equations119 5.4Solutions for Viscous Incompressible Flow120 5.4.1Steady,Laminar Flow Between Fixed Parallel Plates120 5.4.2Steady,Laminar Flow in Circular Tubes123 第5章流体流动的微分分析108 5.1质量守恒108 5.1.1微分形式的连续性方程109 5.1.2柱坐标系中的连续性方程112 5.2动量守恒112 5.2.1作用在微元上的力113 5.2.2运动方程116 5.3黏性流动118 5.3.1应力-变形关系118 5.3.2纳维-斯托克斯方程119 5.4黏性不可压缩流动的求解120 5.4.1固定平板间的定常层流流动120 5.4.2圆管内的定常层流流动123 Chapter 6Similitude and Dimensional Analysis129 6.1Similitude129 6.2Similarity Laws131 6.3Dimensional Analysis134 6.3.1Dimensional homogeneity principle134 6.3.2The Rayleigh Method135 6.3.3The Buckingham’s Π Theorems137 6.3.4Application of the Buckingham’s Π Theorems139 6.4Similitude and Modeling143 6.4.1Approximate Model of Fluid Mechanics Problem143 6.4.2Modeling Example148 第6章相似理论和量纲分析129 6.1相似理论129 6.2相似准则131 6.3量纲分析134 6.3.1量纲和谐原理134 6.3.2瑞利法135 6.3.3白金汉姆Π定理137 6.3.4Π定理的应用139 6.4相似与模化143 6.4.1流体力学问题的近似模型143 6.4.2模化实例148 Chapter 7Pipe Flow154 7.1General Characteristics of Pipe Flow155 7.2Laminar Flow in Circular Pipe158 7.3Turbulent Flow in Circular Pipe162 7.4Pressure Head Losses in Circular Pipe166 7.4.1Mechanism of Flow Resistance166 7.4.2Classification of Pipe Flow Resistances169 7.4.3Calculation of Major Head Loss171 7.4.4Calculation of Minor Head Loss180 7.5Calculation of Head Loss in Pipeline190 7.5.1Equivalent Hydraulic Diameter190 7.5.2Head Loss Calculation of Pipe System191 第7章管内流动154 7.1管内流动的一般特性155 7.2圆管中的层流158 7.3圆管中的湍流162 7.4圆管中的压头损失166 7.4.1流动阻力产生的机理166 7.4.2管内流动阻力的分类169 7.4.3主要损失的计算171 7.4.4次要损失的计算180 7.5管路损失计算190 7.5.1当量水力直径190 7.5.2管道系统的损失计算191 Chapter 8Planar Potential Flow202 8.1Potential Function and Stream Function202 8.1.1Potential Function202 8.1.2Stream Function205 8.2Simple Potential Flow208 8.2.1Uniform Linear Flow208 8.2.2Flow in Rightangle Region209 8.2.3Point Source and Point Sink211 8.2.4Pure Circulation Flow213 8.3Superposition Principle of Potential Flows215 第8章平面势流202 8.1势函数与流函数202 8.1.1势函数202 8.1.2流函数205 8.2简单势流208 8.2.1均匀直线流动208 8.2.2直角区域内的流动209 8.2.3点源和点汇211 8.2.4纯环流流动213 8.3势流叠加原理215 Chapter 9Flow Around Body Immersed225 9.1Overview of Boundary Layer225 9.2Characteristics of boundary layer228 9.2.1Formation of Boundary Layer228 9.2.2The Laminar and Turbulent Boundary Layers231 9.3Boundary Layer Equations234 9.3.1The Governing Equations234 9.3.2Boundary Layer Thickness237 9.4Flow Around a Cylinder240 9.4.1Ideal Fluid Flow Around a Cylinder240 9.4.2Viscous Fluid Flow Around a Cylinder243 9.5Flow Around a Sphere250 9.5.1Ideal Fluid Flow Around a Sphere250 9.5.2Viscous Fluid Flow Around a Sphere253 第9章绕物流动225 9.1边界层概述225 9.2边界层特性228 9.2.1边界层的形成228 9.2.2层流和湍流边界层231 9.3边界层方程234 9.3.1控制方程234 9.3.2边界层厚度237 9.4绕圆柱流动240 9.4.1理想流体绕圆柱流动240 9.4.2黏性流体绕圆柱流动243 9.5绕球流动250 9.5.1理想流体的绕球流动250 9.5.2黏性流体的绕球流动253 Reference256 参考文献256