登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

2023年08月出版新書

2023年07月出版新書

2023年06月出版新書

2023年05月出版新書

2023年04月出版新書

2023年03月出版新書

2023年02月出版新書

『簡體書』集成功率器件设计及TCAD仿真

書城自編碼: 3187365
分類: 簡體書→大陸圖書→工業技術電子/通信
作者: 付越
國際書號(ISBN): 9787111592730
出版社: 机械工业出版社
出版日期: 2018-05-01
版次: 1
頁數/字數: 321/393000
書度/開本: 16开 釘裝: 平装

售價:NT$ 813

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
数字经济蓝皮书:全球数字经济竞争力发展报告(2023)
《 数字经济蓝皮书:全球数字经济竞争力发展报告(2023) 》

售價:NT$ 885.0
中国燃料电池汽车产业实践:政策、技术、建议及展望    中国汽车技术研究中心有限公司
《 中国燃料电池汽车产业实践:政策、技术、建议及展望 中国汽车技术研究中心有限公司 》

售價:NT$ 773.0
烘焙星球 阿木的手作烘焙日记
《 烘焙星球 阿木的手作烘焙日记 》

售價:NT$ 493.0
WebGIS原理及开发——基于开源框架的WebGIS技术
《 WebGIS原理及开发——基于开源框架的WebGIS技术 》

售價:NT$ 442.0
舵手证券图书 周期与龙头 A股剑客著 解密龙头股周期性循环 游资操盘手法实战解读
《 舵手证券图书 周期与龙头 A股剑客著 解密龙头股周期性循环 游资操盘手法实战解读 》

售價:NT$ 941.0
华夏衣裳:汉服制作实例教程
《 华夏衣裳:汉服制作实例教程 》

售價:NT$ 834.0
狂飙年代:18世纪俄国的新文化和旧文化(第一卷)
《 狂飙年代:18世纪俄国的新文化和旧文化(第一卷) 》

售價:NT$ 885.0
电气线路互联系统(EWIS)设计实践指南    达索析统(上海)信息技术有限公司
《 电气线路互联系统(EWIS)设计实践指南 达索析统(上海)信息技术有限公司 》

售價:NT$ 834.0

建議一齊購買:

+

NT$ 1034
《 IGBT器件 物理、设计与应用 》
+

NT$ 660
《 IGBT模块:技术、驱动和应用(中文版 原书第2版) 》
+

NT$ 743
《 电力电子变换器:PWM策略与电流控制技术 》
+

NT$ 921
《 功率半导体器件基础 》
內容簡介:
本书从电力电子到功率集成电路(PIC)、智能功率技术、器件等方面给电源管理和半导体产业提供了一个完整的描述。本书不仅介绍了集成功率半导体器件,如横向双扩散金属氧化物半导体场效应晶体管(LDMOSFET)、横向绝缘栅双极型晶体管(LIGBT)和超结LDMOSFET的内部物理现象,还对电源管理系统进行了一个简单的介绍。本书运用计算机辅助设计技术(TCAD)仿真实例讲解集成功率半导体器件的设计,代替抽象的理论处理和令人生畏的方程,并且还探讨了下一代功率器件,如氮化镓高电子迁移率功率晶体管(GaN功率HEMT)。本书内容有助于填补功率器件工程和电源管理系统之间的空白。书中包括智能PIC的一个典型的工艺流程以及很难在其他同类书中找到的技术开发组织图,通过对本书的阅读,可以使学生和年轻的工程师在功率半导体器件领域领先一步。
關於作者:
第1章 电力电子,可以实现绿色的技术1
 1.1 电力电子介绍1
 1.2 电力电子的发展历程3
 1.3 DC/DC变换器4
 1.4 线性稳压器4
 1.5 开关电容DC/DC变换器(电荷泵) 5
 1.6 开关模式DC/DC变换器6
 1.7 线性稳压器、电荷泵和开关调节器的比较8
 1.8 非隔离DC/DC开关变换器的拓扑结构8
1.8.1 Buck变换器9
1.8.2 Boost变换器11译者序
原书前言
作者简介
第1章 电力电子,可以实现绿色的技术1
 1.1 电力电子介绍1
 1.2 电力电子的发展历程3
 1.3 DC/DC变换器4
 1.4 线性稳压器4
 1.5 开关电容DC/DC变换器(电荷泵) 5
 1.6 开关模式DC/DC变换器6
 1.7 线性稳压器、电荷泵和开关调节器的比较8
 1.8 非隔离DC/DC开关变换器的拓扑结构8
1.8.1 Buck变换器9
1.8.2 Boost变换器11
1.8.3 Buck-boost变换器12
1.8.4 Cuk变换器14
1.8.5 非隔离式变换器额外的话题14
 1.9 隔离的开关变换器拓扑结构16
1.9.1 反激式变换器16
1.9.2 正激式变换器17
1.9.3 全桥变换器18
1.9.4 半桥变换器19
1.9.5 推挽变换器20
1.9.6 隔离DC/DC变换器其他话题20
1.9.7 隔离DC/DC变换器拓扑结构的比较22
 1.10 SPICE电路仿真22
 1.11 对于电池供电器件的电源管理系统23
 1.12 小结24
第2章 功率变换器和电源管理芯片25
 2.1 用于VLSI电源管理的动态电压调节25
 2.2 集成的DC/DC变换器27
2.2.1 分段的输出级29
2.2.2 一个辅助级的瞬态抑制32
 2.3 小结36
第3章 半导体产业和超摩尔定律37
 3.1 半导体产业37
 3.2 半导体产业的历史38
3.2.1 一个简要的时间表38
3.2.2 八叛逆38
3.2.3 半导体产业的历史路线图39
 3.3 半导体产业的食物链金字塔40
3.3.1 第1层:晶圆和EDA工具41
3.3.2 第2层:器件工程42
3.3.3 第3层:IC设计42
3.3.4 第4层:制造、封装和测试43
3.3.5 第5层:系统和软件43
3.3.6 第6层:市场营销44
 3.4 半导体公司45
 3.5 超摩尔定律46
第4章 智能功率IC技术49
 4.1 智能功率IC技术基础49
 4.2 智能功率IC技术:历史展望50
 4.3 智能功率IC技术:产业展望52
4.3.1 智能功率IC技术的工程组52
4.3.2 智能功率IC技术开发流程55
4.3.3 计划阶段56
4.3.4 工艺集成和器件设计57
4.3.5 布图、投片、制造和测试58
4.3.6 可靠性和标准59
4.3.7 目前智能功率技术的概述60
 4.4 智能功率IC技术:技术展望61
4.4.1 智能功率技术中的器件62
4.4.2 智能功率IC技术的设计考虑62
4.4.3 隔离方法65
第5章 TCAD工艺仿真介绍67
 5.1 概述67
 5.2 网格设置和初始化67
 5.3 离子注入69
5.3.1分析模型70
5.3.2 多层注入71
目录Ⅸ 
5.3.3 MonteCarlo模拟71
 5.4 淀积72
 5.5 氧化73
5.5.1 干氧氧化73
5.5.2 湿氧氧化74
5.5.3 氧化模型74
 5.6 刻蚀76
 5.7 扩散77
5.7.1 扩散机制78
5.7.2 扩散模型79
 5.8 分凝80
 5.9 工艺模拟器模型的校准83
 5.10 3D TCAD工艺仿真介绍84
 5.11 GPU仿真85
第6章 TCAD器件仿真介绍87
 6.1 概述87
 6.2 器件仿真基础87
6.2.1 漂移-扩散模型87
6.2.2 离散化88
6.2.3 Newton方法89
6.2.4 初始猜测和自适应偏置步长89
6.2.5 收敛问题90
6.2.6 边界条件91
6.2.7 瞬态仿真93
6.2.8 网格问题93
 6.3 物理模型93
6.3.1 载流子统计94
6.3.2 杂质的不完全电离94
6.3.3 重掺杂效应94
6.3.4 SRH和Auger复合94
6.3.5 雪崩击穿和碰撞电离95
6.3.6 载流子迁移率101
6.3.7 热和自加热106
6.3.8 带隙变窄效应107
 6.4 AC分析107
6.4.1 引言107
6.4.2 基本的公式108
6.4.3 在TCAD中的AC分析110
 Ⅹ 集成功率器件设计及TCAD仿真
 6.5 在TCAD仿真中的陷阱模型111
6.5.1 陷阱电荷的状态111
6.5.2 陷阱动力学112
 6.6 量子隧穿115
6.6.1 功率器件中量子隧穿的重要性115
6.6.2 TCAD仿真的基本隧穿理论116
6.6.3 隧穿的非平衡Green函数的介绍118
 6.7 器件仿真器模型的校准119
第7章 功率IC工艺流程的TCAD仿真120
 7.1 概述120
 7.2 一个模拟的功率IC工艺流程120
7.2.1 工艺流程步骤120
7.2.2 模拟的工艺流程的结构视图121
 7.3 智能功率IC工艺流程模拟122
7.3.1 P+衬底122
7.3.2 N型掩埋层123
7.3.3 外延层生长和深N连接125
7.3.4 高压双阱127
7.3.5 N-LDMOS的P型体注入128
7.3.6 有源区面积/浅沟槽隔离(STI) 129
7.3.7 N阱和P阱134
7.3.8 低压双阱135
7.3.9 厚栅氧层和薄栅氧层136
7.3.10 多晶栅139
7.3.11 NLDD和PLDD 139
7.3.12 侧墙141
7.3.13 NSD和PSD 142
7.3.14 后端工序144
第8章 集成功率半导体器件的TCAD仿真150
 8.1 PN结二极管150
8.1.1 PN结基础150
8.1.2 在平衡时的横向PN结二极管151
8.1.3 正向导通(导通态) 153
8.1.4 一个PN结二极管的反向偏置156
8.1.5 具有NBL的横向PN结二极管156
8.1.6 PN结二极管的击穿电压增强158
8.1.7 反向恢复166
8.1.8 Schottky二极管169
目录Ⅺ 
8.1.9 Zener二极管170
8.1.10 PN结二极管的小信号模型173
 8.2 双极结型晶体管174
8.2.1 NPN型BJT的基本工作原理175
8.2.2 NPN型BJT的击穿178
8.2.3 BJT的I-V曲线族182
8.2.4 Kirk效应182
8.2.5 BJT热失控和二次击穿的仿真186
8.2.6 BJT的小信号模型和截止频率的仿真188
 8.3 LDMOS 191
8.3.1 击穿电压的提高191
8.3.2 LDMOS中的寄生NPNBJT 220
8.3.3 LDMOS的导通电阻222
8.3.4 LDMOS的阈值电压226
8.3.5 LDMOS的辐照加固设计227
8.3.6 LDMOS的I-V曲线族228
8.3.7 LDMOS的自加热230
8.3.8 LDMOS的寄生电容231
8.3.9 LDMOS的栅电荷234
8.3.10 LDMOS非钳位感应开关(UIS) 235
8.3.11 LDMOS的简洁模型236
第9章 集成的功率半导体器件的3DTCAD模拟238
 9.1 3D器件的布局效应238
 9.2 LIGBT的3D仿真241
9.2.1 关于LIGBT 241
9.2.2 分段阳极LIGBT 241
9.2.3 分段阳极LIGBT3D工艺仿真244
9.2.4 分段阳极LIGBT的3D器件仿真246
 9.3 超结LDMOS 254
9.3.1 基本概念254
9.3.2 超结LDMOS的结构261
9.3.3 超结LDMOS的3D仿真261
9.3.4 超结LDMOS的3D器件仿真264
9.3.5 一个具有相同的N漂移区掺杂的标准LDMOS的3D仿真265
9.3.6 一个N漂移区掺杂降低的标准LDMOS的3D仿真265
9.3.7 超结LDMOS和标准LDMOS的比较266
 9.4 超结功率FinFET 267
9.4.1 超结功率FinFET的工艺流程269
 Ⅻ 集成功率器件设计及TCAD仿真
9.4.2 超结功率FinFET的测量结果270
9.4.3 超结功率FinFET的3D仿真271
 9.5 大的互连仿真273
9.5.1 大的互连的3D工艺仿真275
9.5.2 大的互连的3D器件仿真279
第10章 GaN器件介绍281
 10.1 化合物材料与硅281
 10.2 GaN器件的衬底材料282
 10.3 Ⅲ -氮族纤锌矿结构的极化特性283
10.3.1 微观偶极子与极化矢量283
10.3.2 晶体结构与极化284
10.3.3 零净极化的理想c0/a0比284
 10.4 AlGaN/GaN异质结287
10.4.1 具有固定铝摩尔分数的能带图288
10.4.2 具有一个固定的AlGaN层厚度的能带图289
10.4.3 具有掺杂的AlGaN或GaN层的AlGaN/GaN结构291
10.4.4 具有金属接触的AlGaN/GaN结构292
 10.5 在AlGaN/GaN结构中的陷阱293
 10.6 一个简单的AlGaN/GaN HEMT 294
10.6.1 器件结构294
10.6.2 GaN HEMT的ID -VG曲线296
10.6.3 小结297
 10.7 GaN功率HEMT例子Ⅰ 298
10.7.1 器件结构298
10.7.2 GaN材料的碰撞电离系数300
10.7.3 GaNHEMT器件的击穿仿真300
 10.8 GaN功率HEMT范例Ⅱ 301
 10.9 GaN HEMT器件的栅极漏电流的仿真302
10.9.1 器件结构302
10.9.2 模型和仿真设置303
10.9.3 栅极泄漏电流仿真305
 10.10 化合物半导体电力应用的市场前景306
附录A 载流子统计308
附录B 载流子统计309
附录C 陷阱动力学和AC分析320
目錄
译者序
原书前言
作者简介
第1章 电力电子,可以实现绿色的技术1
 1.1 电力电子介绍1
 1.2 电力电子的发展历程3
 1.3 DC/DC变换器4
 1.4 线性稳压器4
 1.5 开关电容DC/DC变换器(电荷泵) 5
 1.6 开关模式DC/DC变换器6
 1.7 线性稳压器、电荷泵和开关调节器的比较8
 1.8 非隔离DC/DC开关变换器的拓扑结构8
1.8.1 Buck变换器9
1.8.2 Boost变换器11
1.8.3 Buck-boost变换器12
1.8.4 Cuk变换器14
1.8.5 非隔离式变换器额外的话题14
 1.9 隔离的开关变换器拓扑结构16
1.9.1 反激式变换器16
1.9.2 正激式变换器17
1.9.3 全桥变换器18
1.9.4 半桥变换器19
1.9.5 推挽变换器20
1.9.6 隔离DC/DC变换器其他话题20
1.9.7 隔离DC/DC变换器拓扑结构的比较22
 1.10 SPICE电路仿真22
 1.11 对于电池供电器件的电源管理系统23
 1.12 小结24
第2章 功率变换器和电源管理芯片25
 2.1 用于VLSI电源管理的动态电压调节25
 2.2 集成的DC/DC变换器27
2.2.1 分段的输出级29
2.2.2 一个辅助级的瞬态抑制32
 2.3 小结36
第3章 半导体产业和超摩尔定律37
 3.1 半导体产业37
 3.2 半导体产业的历史38
3.2.1 一个简要的时间表38
3.2.2 八叛逆38
3.2.3 半导体产业的历史路线图39
 3.3 半导体产业的食物链金字塔40
3.3.1 第1层:晶圆和EDA工具41
3.3.2 第2层:器件工程42
3.3.3 第3层:IC设计42
3.3.4 第4层:制造、封装和测试43
3.3.5 第5层:系统和软件43
3.3.6 第6层:市场营销44
 3.4 半导体公司45
 3.5 超摩尔定律46
第4章 智能功率IC技术49
 4.1 智能功率IC技术基础49
 4.2 智能功率IC技术:历史展望50
 4.3 智能功率IC技术:产业展望52
4.3.1 智能功率IC技术的工程组52
4.3.2 智能功率IC技术开发流程55
4.3.3 计划阶段56
4.3.4 工艺集成和器件设计57
4.3.5 布图、投片、制造和测试58
4.3.6 可靠性和标准59
4.3.7 目前智能功率技术的概述60
 4.4 智能功率IC技术:技术展望61
4.4.1 智能功率技术中的器件62
4.4.2 智能功率IC技术的设计考虑62
4.4.3 隔离方法65
第5章 TCAD工艺仿真介绍67
 5.1 概述67
 5.2 网格设置和初始化67
 5.3 离子注入69
5.3.1分析模型70
5.3.2 多层注入71
目录Ⅸ 
5.3.3 MonteCarlo模拟71
 5.4 淀积72
 5.5 氧化73
5.5.1 干氧氧化73
5.5.2 湿氧氧化74
5.5.3 氧化模型74
 5.6 刻蚀76
 5.7 扩散77
5.7.1 扩散机制78
5.7.2 扩散模型79
 5.8 分凝80
 5.9 工艺模拟器模型的校准83
 5.10 3D TCAD工艺仿真介绍84
 5.11 GPU仿真85
第6章 TCAD器件仿真介绍87
 6.1 概述87
 6.2 器件仿真基础87
6.2.1 漂移-扩散模型87
6.2.2 离散化88
6.2.3 Newton方法89
6.2.4 初始猜测和自适应偏置步长89
6.2.5 收敛问题90
6.2.6 边界条件91
6.2.7 瞬态仿真93
6.2.8 网格问题93
 6.3 物理模型93
6.3.1 载流子统计94
6.3.2 杂质的不完全电离94
6.3.3 重掺杂效应94
6.3.4 SRH和Auger复合94
6.3.5 雪崩击穿和碰撞电离95
6.3.6 载流子迁移率101
6.3.7 热和自加热106
6.3.8 带隙变窄效应107
 6.4 AC分析107
6.4.1 引言107
6.4.2 基本的公式108
6.4.3 在TCAD中的AC分析110
 Ⅹ 集成功率器件设计及TCAD仿真
 6.5 在TCAD仿真中的陷阱模型111
6.5.1 陷阱电荷的状态111
6.5.2 陷阱动力学112
 6.6 量子隧穿115
6.6.1 功率器件中量子隧穿的重要性115
6.6.2 TCAD仿真的基本隧穿理论116
6.6.3 隧穿的非平衡Green函数的介绍118
 6.7 器件仿真器模型的校准119
第7章 功率IC工艺流程的TCAD仿真120
 7.1 概述120
 7.2 一个模拟的功率IC工艺流程120
7.2.1 工艺流程步骤120
7.2.2 模拟的工艺流程的结构视图121
 7.3 智能功率IC工艺流程模拟122
7.3.1 P+衬底122
7.3.2 N型掩埋层123
7.3.3 外延层生长和深N连接125
7.3.4 高压双阱127
7.3.5 N-LDMOS的P型体注入128
7.3.6 有源区面积/浅沟槽隔离(STI) 129
7.3.7 N阱和P阱134
7.3.8 低压双阱135
7.3.9 厚栅氧层和薄栅氧层136
7.3.10 多晶栅139
7.3.11 NLDD和PLDD 139
7.3.12 侧墙141
7.3.13 NSD和PSD 142
7.3.14 后端工序144
第8章 集成功率半导体器件的TCAD仿真150
 8.1 PN结二极管150
8.1.1 PN结基础150
8.1.2 在平衡时的横向PN结二极管151
8.1.3 正向导通(导通态) 153
8.1.4 一个PN结二极管的反向偏置156
8.1.5 具有NBL的横向PN结二极管156
8.1.6 PN结二极管的击穿电压增强158
8.1.7 反向恢复166
8.1.8 Schottky二极管169
目录Ⅺ 
8.1.9 Zener二极管170
8.1.10 PN结二极管的小信号模型173
 8.2 双极结型晶体管174
8.2.1 NPN型BJT的基本工作原理175
8.2.2 NPN型BJT的击穿178
8.2.3 BJT的I-V曲线族182
8.2.4 Kirk效应182
8.2.5 BJT热失控和二次击穿的仿真186
8.2.6 BJT的小信号模型和截止频率的仿真188
 8.3 LDMOS 191
8.3.1 击穿电压的提高191
8.3.2 LDMOS中的寄生NPNBJT 220
8.3.3 LDMOS的导通电阻222
8.3.4 LDMOS的阈值电压226
8.3.5 LDMOS的辐照加固设计227
8.3.6 LDMOS的I-V曲线族228
8.3.7 LDMOS的自加热230
8.3.8 LDMOS的寄生电容231
8.3.9 LDMOS的栅电荷234
8.3.10 LDMOS非钳位感应开关(UIS) 235
8.3.11 LDMOS的简洁模型236
第9章 集成的功率半导体器件的3DTCAD模拟238
 9.1 3D器件的布局效应238
 9.2 LIGBT的3D仿真241
9.2.1 关于LIGBT 241
9.2.2 分段阳极LIGBT 241
9.2.3 分段阳极LIGBT3D工艺仿真244
9.2.4 分段阳极LIGBT的3D器件仿真246
 9.3 超结LDMOS 254
9.3.1 基本概念254
9.3.2 超结LDMOS的结构261
9.3.3 超结LDMOS的3D仿真261
9.3.4 超结LDMOS的3D器件仿真264
9.3.5 一个具有相同的N漂移区掺杂的标准LDMOS的3D仿真265
9.3.6 一个N漂移区掺杂降低的标准LDMOS的3D仿真265
9.3.7 超结LDMOS和标准LDMOS的比较266
 9.4 超结功率FinFET 267
9.4.1 超结功率FinFET的工艺流程269
 Ⅻ 集成功率器件设计及TCAD仿真
9.4.2 超结功率FinFET的测量结果270
9.4.3 超结功率FinFET的3D仿真271
 9.5 大的互连仿真273
9.5.1 大的互连的3D工艺仿真275
9.5.2 大的互连的3D器件仿真279
第10章 GaN器件介绍281
 10.1 化合物材料与硅281
 10.2 GaN器件的衬底材料282
 10.3 Ⅲ -氮族纤锌矿结构的极化特性283
10.3.1 微观偶极子与极化矢量283
10.3.2 晶体结构与极化284
10.3.3 零净极化的理想c0/a0比284
 10.4 AlGaN/GaN异质结287
10.4.1 具有固定铝摩尔分数的能带图288
10.4.2 具有一个固定的AlGaN层厚度的能带图289
10.4.3 具有掺杂的AlGaN或GaN层的AlGaN/GaN结构291
10.4.4 具有金属接触的AlGaN/GaN结构292
 10.5 在AlGaN/GaN结构中的陷阱293
 10.6 一个简单的AlGaN/GaN HEMT 294
10.6.1 器件结构294
10.6.2 GaN HEMT的ID -VG曲线296
10.6.3 小结297
 10.7 GaN功率HEMT例子Ⅰ 298
10.7.1 器件结构298
10.7.2 GaN材料的碰撞电离系数300
10.7.3 GaNHEMT器件的击穿仿真300
 10.8 GaN功率HEMT范例Ⅱ 301
 10.9 GaN HEMT器件的栅极漏电流的仿真302
10.9.1 器件结构302
10.9.2 模型和仿真设置303
10.9.3 栅极泄漏电流仿真305
 10.10 化合物半导体电力应用的市场前景306
附录A 载流子统计308
附录B 载流子统计309
附录C 陷阱动力学和AC分析320
內容試閱
从20世纪40年代末晶体管的发明开始,晶体管主要沿着两个方向,即器件的小型化以及性能改进发展。性能改进的关键参数之一是晶体管的额定功率,它的发展导致功率半导体领域的产生。因为所有的电子器件都需要一个合适工作的电源和电源管理电路,功率半导体领域是过去几十年晶体管发展的一个重要领域。
近年来,器件小型化使得最小特征尺寸接近纳米级,而目前的超大规模集成电路(ULSI)技术能够把数十亿个晶体管集成在一个芯片上,这在芯片供电时会产生严重的问题。此外,由于环境问题需要更高的功率效率,也给系统的电源管理和电源电路带来了沉重的负担。这些和其他相关问题推动了功率半导体器件与技术领域的持续研究。
功率半导体领域发展的重点是针对高额定功率的分立功率器件。典型结构是双极型功率晶体管和晶闸管。由于这些器件缓慢的开关速度和较大的开关损耗,发明了快速开关器件,如垂直双扩散MOS(VDMOS) 晶体管,而应对较小的功率损耗,发明了绝缘栅双极型晶体管(IGBT)。随着集成电路(IC)技术应用越来越普遍,推动了集成功率晶体管与控制IC的低成本、结构紧凑和高性能的应用。为了实现这一目标,开发了横向双扩散MOS(LDMOS) 晶体管和横向绝缘栅双极型晶体管(LIGBT)。这是功率IC (PIC) 技术发展的黄金时代,并开发出了不同的双极CMOSDMOS(BCD)技术。
伴随如今发达的ULSI和PIC技术,预计片上功率系统(PowerSOC)的发展对未来的消费和工业应用将是一个非常有前途的方向。当然,要实现这一目标,实现高性能单片无源元件的各种其他技术,也需要有效的无源元件和IC集成以及有效的功耗技术。
PIC技术的开发,无论是高性能的横向功率晶体管还是工艺技术都是必需的。对半导体器件和工艺技术的高效设计,在业界常用到计算机辅助设计技术(TCAD)工具。市面上已经出版了一些关于功率器件设计和工艺开发的书籍,但没有特别关注如何利用TCAD工具设计和开发功率器件和PIC的。本书目的是满足这方面的需要,特别是刚刚进入功率半导体领域的工程师,对采用TCAD工具对器件和工艺进行设计和开发提供一个快速入门的途径。
本书采用了自上而下的方法,引领新的工程师进入到该领域。它从基本的电力电子系统开始,同时介绍了功率IC,并在进入智能功率集成电路技术之前引导读者探索半导体产业,然后解释基本工艺和器件模拟的TCAD建模,并讨论了具体制造过程的精确和可靠模拟结果的模型校准,然后对如何利用TCAD工具进行功率IC工艺开发和功率器件设计进行了详细介绍,这包括许多实际功率器件和工艺技术与工业设计有关的TCAD方法和过程的仿真实例。超过300张的图示有效地说明了功率器件和设计的关键概念和技术。最后,简要介绍了GaN功率器件的TCAD仿真,特别是对那些具有硅技术背景的,刚开始从事这一领域的读者非常有帮助。
在本书的写作过程中,作者得到了很多人的帮助和支持。要对他们每一个人慷慨的帮助和支持表示衷心的感谢。特别要感谢CrosslightSoftware的MichelLestrade,在审阅和校对工作中做出了重要贡献;感谢不列颠哥伦比亚大学MaggieXia和Dr.YuanweiDong教授对第7章工艺仿真和其他章节的审阅;感谢浙江大学GangXie教授对第10章关于GaN器件仿真模拟的审阅;感谢MegaHertzPowerSystems公司首席执行官RobertTaylor和GreeconTechnologies公司的RoumenPetkov博士对第1章的审阅和建议;感谢飞兆半导体公司(USA) GaryDolny博士和伊利诺理工大学的JohnShen教授对全书初步审阅和建议。
最后,特别感谢Taylor& Francis的NoraKonopka、MicheleSmith、KathrynEverett、IrisFahrer和TheresaDelforn专业和热情的帮助。

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.