登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』综放开采“组合短悬臂梁-铰接岩梁结构”形成机理与应用

書城自編碼: 3160479
分類: 簡體書→大陸圖書→工業技術機械/儀表工業
作者: 闫少宏,于雷,刘全明
國際書號(ISBN): 9787502055837
出版社: 煤炭工业出版社
出版日期: 2018-06-01


書度/開本: 16开

售價:NT$ 702

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
敢为天下先:三年建成港科大
《 敢为天下先:三年建成港科大 》

售價:NT$ 352.0
直观的经营:哲学视野下的动态管理
《 直观的经营:哲学视野下的动态管理 》

售價:NT$ 407.0
长高食谱 让孩子长高个的饮食方案 0-15周岁儿童调理脾胃食谱书籍宝宝辅食书 让孩子爱吃饭  6-9-12岁儿童营养健康食谱书大全 助力孩子身体棒胃口好长得高
《 长高食谱 让孩子长高个的饮食方案 0-15周岁儿童调理脾胃食谱书籍宝宝辅食书 让孩子爱吃饭 6-9-12岁儿童营养健康食谱书大全 助力孩子身体棒胃口好长得高 》

售價:NT$ 214.0
身体自愈力:解决内在病因的身体智慧指南
《 身体自愈力:解决内在病因的身体智慧指南 》

售價:NT$ 449.0
非言语沟通经典入门:影响人际交往的重要力量(第7版)
《 非言语沟通经典入门:影响人际交往的重要力量(第7版) 》

售價:NT$ 560.0
山西寺观艺术壁画精编卷
《 山西寺观艺术壁画精编卷 》

售價:NT$ 7650.0
中国摄影 中式摄影的独特魅力
《 中国摄影 中式摄影的独特魅力 》

售價:NT$ 4998.0
山西寺观艺术彩塑精编卷
《 山西寺观艺术彩塑精编卷 》

售價:NT$ 7650.0

編輯推薦:
本书可作为从事采矿工程专业的大、中专生和研究生的参考书,也可供有关科研人员、工程人员参考。
內容簡介:
ISBN 978-7-5020-5583-7
开本787mm1092mm 116 印张16 字数 323千字
版次2017年6月第1版2017年6月第1次印刷
社内编号8446 定价108.00元
内容提要
本书是研究综放开采顶煤与顶板活动规律的专著。作者抓住综放开采采厚大、顶板活动空间大、顶煤体力学变形特征在围岩活动规律与支架-围岩相互作用关系中起关键作用的特点,深入研究了综放开采顶煤运移规律。从综放工作面顶板控制的角度,给出了综放开采直接顶、基本顶的新定义;从上位顶板对综放支架有无作用力的角度提出了有变形压力岩层与无变形压力岩层。在此基础上研究了综放开采上位岩层形成组合短悬臂梁-铰接岩梁结构的机理,得出了综放支架工作阻力下限值的计算公式及影响因素。将此理论应用于浅埋煤层综放开采中,得出了不同地质条件下覆岩所成结构与液压支架工作阻力下限值的确定方法。ISBN 978-7-5020-5583-7
开本787mm1092mm 116 印张
16 字数 323千字
版次2017年6月第1版 2017年6月第1次印刷
社内编号8446 定价108.00元
内容提要
本书是研究综放开采顶煤与顶板活动规律的专著。作者抓住综放开采采厚大、顶板活动空间大、顶煤体力学变形特征在围岩活动规律与支架-围岩相互作用关系中起关键作用的特点,深入研究了综放开采顶煤运移规律。从综放工作面顶板控制的角度,给出了综放开采直接顶、基本顶的新定义;从上位顶板对综放支架有无作用力的角度提出了有变形压力岩层与无变形压力岩层。在此基础上研究了综放开采上位岩层形成组合短悬臂梁-铰接岩梁结构的机理,得出了综放支架工作阻力下限值的计算公式及影响因素。将此理论应用于浅埋煤层综放开采中,得出了不同地质条件下覆岩所成结构与液压支架工作阻力下限值的确定方法。
Executive Summary
This book is on studies of movement regularities of top coal and
roof in top coal caving mining. In top coal caving mining,
mining thickness and space for roof movement is large, and top coal deforms
under mechanics. These play a key role in the interactions between
surrounding rocks and hydraulic supports. Based
on these properties, the author proposed new definitions of basic roof and
immediate roof in top coal caving, rock strata with deformation pressure and rock strata
without deformation pressure depending on whether or not forces are posed on hydraulic supports
from the strata. The author then studied the mechanism of combined short cantilever
beams-hinged rock beams structure formed by the upper rock strata. From
this mechanism, the author proposed the calculation formula and influence
factors on lower limit value of hydraulic supports in top coal caving. Applying the theory in top coal caving mining for shallow coal seam,
the author also proposed the determination methods on both structures of
overlying strata and the lower limit value under different geological
conditions.
This book can be used as a reference book for both college students
and field engineers in coal mining industry.
目錄
目次

1 绪论
1.1 概述
1.2 综放开采技术发展
1.3 综放开采典型工艺模式
1.4 综放开采矿压显现特点
1.5 综放采场上覆岩层结构特征研究现状
1.6 综放开采支架-围岩关系研究现状
1.7 综放支架工作阻力的确定
2 综放开采顶煤与顶板运移规律实测研究
2.1 郑州米村矿15011综放工作面顶煤与顶板运移实测
2.2 郑州米村矿15051综放工作面顶煤与顶板运移实测
2.3 阳泉15号煤层综放工作面顶煤与顶板运移实测
2.4 汾西水峪矿7101综放工作面顶煤与顶板运移实测
2.5 潞安王庄矿4309综放工作面、大同忻州窑矿8902综放工作面顶煤裂隙发育实测
3 综放开采顶煤运移理论研究
3.1 综放开采顶煤运移的理论分析
3.2 损伤力学理论在顶煤分区中的应用
3.3 基于顶煤运移损伤力学特征的支架工作阻力的确定
4 综放开采矿压显现规律实测研究
4.1 塔山矿综放开采顶板活动规律
4.2 千树塔煤矿综放工作面矿压显现规律
5 普通埋深综放开采相似模拟研究
5.1 相似模拟试验设计
5.2 组合短悬臂梁-铰接岩梁结构的动态演化
5.3 组合短悬臂梁-铰接岩梁结构对矿压的影响
5.4 组合短悬臂梁-铰接岩梁结构的采厚效应
5.5 组合短悬臂梁-铰接岩梁结构的割煤高度效应
5.6 小结
6榆神矿区综放开采相似模拟研究
6.1 相似模拟试验模型的建立
6.2 综放工作面覆岩活动规律的埋深效应
6.3 综放工作面覆岩活动规律的采厚效应
6.4 综放工作面覆岩活动规律的基岩厚度效应
6.5 综放工作面覆岩活动规律的基采比效应
6.6 小结
7基于综放开采顶板结构特征的支架工作阻力的确定
7.1 综放工作面直接顶、基本顶新概念
7.2 综放支架工作阻力下限值计算
7.3 其他特殊综放开采顶板结构支架工作阻力的计算
7.4 综放支架工作阻力影响因素分析
7.5 小结
8综放支架工作阻力下限值确定的现场应用
8.1 塔山矿8105综放工作面的应用
8.2 千树塔煤矿11305综放工作面的应用

参考文献
后记



Contents

1 Introduction
1.1 Overview
1.2 Technology development of fully mechanized top
coal caving
1.3 Typical process mode of fully mechanized top coal
caving
1.4 Characteristics of strata behaviors in fully
mechanized top coal caving
1.5 Research status on structures of overlying
strata over fully mechanized topcoal caving area
1.6 Research status on relations between hydraulic supports and
surrounding rocks in fully mechanized top coal caving
1.7 Determination of working resistance of hydraulic supports for
fully mechanized top coal caving
2 Field study on movement regularities of
top coal and roof in fully mechanized top coal caving
2.1 Field measurement of movement of coal and roof at No. 15011 Fully Mechanized Top Coal Caving Face in Micun Coal Mine,
Zhengzhou City
2.2 Field measurement of movement of top coal and roof at No. 15051 Fully Mechanized Top Coal Caving Face in Micun Coal Mine,
Zhengzhou City
2.3 Field measurement of movement of top coal and roof at No. 15 Fully Mechanized Top Coal Caving Face at Yangquan Coal Mine
2.4 Field measurement of movement of top coal at No. 7101 Fully Mechanized Top Coal Caving Face in Shuiyu Coal Mine,
Fenxi City
2.5 Field measurement of fracture development in top coal at No. 4309 Fully Mechanized Top Coal Caving Face in Wangzhuang Coal Mine,
Luan City and at No. 8902 Fully Mechanized Top Coal Caving Face in
Xinzhouyao Coal Mine, Datong City
3 Theoretical study on top coal movement in
fully mechanized top coal caving
3.1 Theoretical analysis of top coal movement in
fully mechanized caving mining
3.2 Application of damage mechanics theory in top
coal division
3.3 Establishing top coal movement equation with damage
mechanics theory
4 Field study of strata behavior in fully
mechanized top coal caving mining
4.1 Field reseach on roof movement in fully mechanized top coal caving
mining in Tashan Coal Mine
4.2 Field reseach on strata behavior in fully mechanized top coal
caving face in Qianshuta Coal Mine
5 Analog simulation study on fully
mechanized top coal caving mining
5.1 Analog simulation test design
5.2 Dynamic evolution of the combined short cantilever rock beams-articulated
rock beams structure
5.3 The effection of combined short cantilever rock beams-articulated
rock beams structure on mine pressure
5.4 Effection on cutting thickness of combined short cantilever rock beams-articulated
rock beams structure
5.5 Effection on cutting height of combined short cantilever rock beams-articulated
rock beams structure
5.6 Chapter summary
6 Similarity simulation study of fully
mechanized top coal caving mining in Yushen mining area
6.1 Establishment of similarity simulation
experimental model
6.2 Effect of burial depth on overlying strata movement at working
face in fully mechanized top coal caving
6.3 Effect of mining thickness on overlying strata movement at working
face in fully mechanized top coal caving
6.4 Effect of bedrock thickness on overlying strata movement at
working face in fully mechanized top coal caving
6.5 Effect of ratio of bedrock thickness and mining thickness on
overlying strata movement at working face in fully mechanized top coal caving
6.6 Chapter summary
7 Determination of working resistance of support based
on structural characteristics of roof in fully mechanized top coal caving
mining
7.1 New concept of immediate roof and basic roof in fully mechanized
top coal caving mining area
7.2 Lower limit calculation of working resistance of hydraulic support
in fully mechanized caving
7.3 Calculation of working resistance for caving support in other
special roof structure in fully mechanized top coal caving mining
7.4 Analysis on influential factors on working resistance of fully
mechanized top coal caving support
7.5 Chapter summary
8 Field application of working resistance lower limit
determination for fully mechanized caving support
8.1 No. 8105 fully mechanized top
coal caving working face in Tashan Coal Mine
8.2 No. 11305 fully mechanized
top coal caving working face in Qianshuta Coal Mine

References
Postscript
內容試閱
前言
井下采矿必然引起作业空间周围岩体的运动,这类由于采矿行为而引起扰动的岩层称之为采动岩层,包括底板、顶板至地表。尽管运动的量化程度受开采参数、围岩组成、地应力等主要因素影响,但因采矿行为而诱发的围岩体运动是必然的。随着开采范围的扩大,围岩体运动范围也依次扩大。从采场横向看,部分岩体在重组平衡过程中产生冒落,部分围岩打破暂时的平衡后重组新的平衡;从采场纵向看,岩层运动范围逐渐上移和扩大,最后波及地表,引起地表沉陷,这是采矿行为所引起的围岩体运动的一般性动态过程,也是采动岩层运动的基本特征。
采场和巷道支护的基本观点是,维护周围的围岩体在作业时间内暂时相对稳定而不垮落,但在采煤作业完成后能及时垮落。井工作业对于围岩稳定性的要求是临时的暂时的,只要在作业时间内不发生围岩的垮落,就能满足采矿的要求,而且从控制的角度,更希望作业完成后又能及时垮落,以保证顶板安全,这是井下采动岩层控制的第一个特点。就是在作业时间内要控制岩层暂时的稳定性;作业完成后,又要及时垮落,即及时的垮落性。
作业空间围岩的运动必然产生水平位移和垂直位移,而岩体是易拉耐压的地质体,极易产生拉裂,这些拉裂块体间与支护体间相互作用,可形成一种暂时稳定结构,这种结构可保护采矿作业空间的安全。也就是说采矿行为导致围岩体出现拉裂,从力学观点讲已符合了某种破坏准则,但由于在支护体与岩块间相互作用而形成的结构呈现出暂时的稳定,对采矿空间不带来顶板灾害,这就是采动岩层的第二个特点,即力学上破坏的煤岩体与支护体间可形成暂时的稳定结构。
随着采矿作业的不断推进,采空面积的扩大,围岩的位移量逐渐增加,因此围岩的状态将由一种稳定的结构向非稳定的结构转化,这也是采动岩层的第三特点,即采动岩层的状态随着采矿作业的推进呈现动态的转化,即由暂时的稳定状态向非稳定状态转化。
暂时的稳定结构保护采矿作业空间的安全,因此研究暂时稳定采动岩层结构的平衡条件及影响因素,显然是重要的。一旦分析清楚平衡条件及可控性影响因素的量化关系,就可采取有效的措施控制采动岩层向非稳定状态转化。采动岩层控制理论研究的核心就是要研究其暂时稳定结构的平衡条件,以此为依据采取相应的控制措施防止非稳定现象的发生,这是我们采矿学者研究岩层控制的基本思想。
综放开采是厚及特厚煤层回采的新型工艺,我国自1982年试验以来已有30多年的历史,经过大量的研究与实践有了长足发展,并日臻完善,为我国煤矿实现高产高效做出了巨大贡献。由于这种采煤工艺一次开采厚度大、采空区顶板活动空间大,其顶板活动规律和矿压显现呈现了与中厚煤层综采相异的特点。按以前人们对于采场矿压规律的认识来看,必然产生强烈的矿压显现,但实际情况是:在大采高综放实践之前即煤层厚度小于10m时,矿压显现并不强烈,有些矿井矿压实测结果还没有上分层综采矿压大;大采高综放实践后,即一次开采厚度大于10m的工作面,却表现出剧烈的矿压显现现象。这些与中厚煤层矿压显现相异的特点以及在不同采厚下综放开采工作面所表现的相异特点,促使了广大学者对此问题的强烈兴趣和责任,以期获得更深层次的认识,寻求这种采煤工艺下顶板岩层暂时稳定的条件,以确定此条件的综放液压支架工作阻力下限值和岩层控制措施。
正是基于上述目标,作者通过深入分析综放开采基本顶-直接顶-顶煤-支架-底板支撑体系与中厚煤层综采基本顶-直接顶-支架-底板的不同,紧紧抓住顶煤体的变化特征及其对综放开采上位顶板结构形成的作用,先后提出了综放开采上位岩层形成挤压拱平衡结构组合短悬臂岩梁-铰接岩梁的观点。
本专著较深入地阐述了组合短悬臂岩梁-绞接岩梁模型的形成机理、平衡条件及支架工作阻力下限值的计算,以期对综放液压支架工作阻力参数的确定与工程实践起到指导作用。
采动岩层活动规律与控制是矿山压力与控制学科研究的核心,其难度是很大的,能逐渐定量并达到应用尤为困难。尽管作者及团队在这一方面做了很大的努力,但依然有许多问题尚未解决,特别是一些参数的确定一直有困惑,影响了实际应用。在此作者也希望有更多的学者一起相互借鉴,相互努力,以促进这一基础学科的发展。
感谢博士生导师陆士良、吴健教授,硕士生导师石平五教授长期以来给予的精心指导,感谢我的研究生们的共同努力。感谢中煤科工集团有限公司、天地科技股份有限公司提供的良好工作环境与研究条件。
由于著者水平有限,书中不足之处,欢迎批评指正。

著者
2017年5月


Preface
Mining activities incur rock movement in the surrounding area
underground. Rock strata disturbed by mining are called mining
strata, which ranges from floor, roof and to the surface
Subject to variable factors such as mining parameters, rock composition, and
ground stress, underground surrounding rock movement is hard to quantify, but
it exist anyhow. The rock movement expands with the range of
mining area. Horizontally, some rocks collapse while others
get new balances through restructuring. Vertically, strata
movement goes upward, spreading to larger area, and in some cases even to the
surface, causing subsidence. The whole dynamic process of
surrounding rocks caused by mining activities is the basic feature of movement
of mining strata.
Fundamental philosophy of underground support at mining areas and
roadways is keeping surrounding rocks from collapse while maintaining them in
temporary stability during operation time. Requirement
for underground surrounding rock stability is temporary. As
long as the rocks do not collapse just during operation, the conditions for
mining can be satisfied. From the point of view of
strata control, timely collapse after operation is more desirable because that
will make the working face safe from large roof caving. That
keeping the strata in temporary stability during operation while after that
making the strata collapse timely marks the first feature of underground mining
strata control.
Surrounding rocks in the operation area move both horizontally and
vertically. Being resistant to top pressure, there tend to
appear tension cracks in rock masses. Supporting tools protect
the mining area by interacting with these cracked rock masses and creating a
temporary stable structure. In other words, the mining
activities caused tension fractures in surrounding rocks and the existing
mechanics are interrupted in some extent. But
because of the temporary stable structures formed between supporting tools and
rock masses, the mining area can be protected from roof falling. That is the second feature of mining strata controlcreating temporary stable
structures with supporting tools by interacting with mechanically disturbed
coal and rock masses.
With the advancing of mining operation, the goaf area expands and
displacement of surrounding rocks increases gradually. The
status of surrounding structures turns from being stable to unstable. That is the third feature of the mining stratathe dynamic conversion from
temporary stability to instability with the advancing of mining operation.
Since structures under temporary stability protect the mining area,
it is important to study the balance conditions and influence factors in the
structures, accordingly taking measures to keep the mining strata from being
unstable. Balance conditions for the temporary structures
are just the core of study on mining strata control. Based
on such studies, measures can thus be taken to prevent roof disasters. That is just the basic philosophy of strata control in mining study.
Fully mechanized top coal caving for thick or ultrathick coal seams dates back to 1982
in China. The technique has played an important role in
improving coal production and efficiency in China. Through
much studies and practices, it has been much improved. In top
coal caving, the mining thickness is bigger, and the moving space of roof in
gob areas is larger. Roof movement and strata behaviors are different
with those in the long wall mining of subthick coal seams. According to the rule of
underground pressure, people used to presume that strata behaviors must be
intense in top coal caving. While in real practice, the
strata behavior is by no means intense when coal seams are less than 10 meters
thick. Field measured pressure in some top coal caving mines is even less
than that in the upper layer of long wall multilayer mining. However, when the mining
thickness is larger than 10 meters, which is called top coal caving with large
mining height, the strata behavior are severe. Different
with ordinary long wall mining in subthick coal seams, and also variable at
top coal caving in different thickness, the dramatic characteristics of strata
behavior in top coal caving with large mining height prompted strong academic
interest and responsibility among scholars, to explore the temporary balance
conditions, to ascertain the lower limit of working resistance for hydraulic
support, and to seek strata control measurement in top coal caving with large
mining height.
To achieve such goal, the author has analyzed the difference between
the support systems composed by main roof, immediate roof, top coal, hydraulic
support and floor in top coal caving and the support system in sub-thick long
wall mining. Focusing on the changes of top coal and its
impact to upper roof, the author proposes the concepts of squeezing arch balance structure among upper strata in top coal
caving and the structure of combined short cantilever rock beams-articulated rocked beams.
In this book the author tries to elaborate the formation of the
structure, its balance conditions, and calculation of lower limit of working
resistance for hydraulic supports, hoping that will help in mining engineering
and in determination of working resistance for top coal caving hydraulic
supports.
Control of mining strata movement is at the core in mining pressure
study, which is not an easy job. But it is even harder to
quantize the movement and put it into application. Many
questions are still on the list to be solved. In
particular some parameters are always puzzling in actual applications. The author is looking forward to joint efforts from fellow scholars
to tackle the difficulties and promote the study of mining strata control.
By this book, the author would like to thank doctorial supervisor
Prof. Lu Shiliang, Prof. Wu Jian, and postgraduate supervisor
Prof. Shi Pingwu for their years of guidance, and also to appreciate my
postgraduate students for their hard work. The
author is also grateful to China Coal Technology & Engineering Group Corp. and Tiandi Science & Technologyco.,Ltd
for providing sound working and research condition.
Comments and suggestions are welcome for any deficiencies in this
book.

The author
May 2017

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.