登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』自然语言处理与深度学习:通过C语言模拟

書城自編碼: 3124846
分類: 簡體書→大陸圖書→計算機/網絡人工智能
作者: [日]小高知宏
國際書號(ISBN): 9787111586579
出版社: 机械工业出版社
出版日期: 2018-01-01
版次: 1
頁數/字數: 178/113000
書度/開本: 16开 釘裝: 平装

售價:NT$ 319

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
天才留步!——从文艺复兴到新艺术运动(一本关于艺术天才的鲜活故事集,聚焦艺术史的高光时刻!)
《 天才留步!——从文艺复兴到新艺术运动(一本关于艺术天才的鲜活故事集,聚焦艺术史的高光时刻!) 》

售價:NT$ 704.0
双城史
《 双城史 》

售價:NT$ 505.0
冯友兰和青年谈心系列:不是问题的问题(哲学大师冯友兰和年轻人谈心,命运解读)
《 冯友兰和青年谈心系列:不是问题的问题(哲学大师冯友兰和年轻人谈心,命运解读) 》

售價:NT$ 254.0
月与蟹(青鲤文库)荣获第144届直木奖,天才推理作家经典作品全新译本。一部青春狂想曲,带你登上心理悬疑之巅。
《 月与蟹(青鲤文库)荣获第144届直木奖,天才推理作家经典作品全新译本。一部青春狂想曲,带你登上心理悬疑之巅。 》

售價:NT$ 230.0
索恩丛书·盛清统治下的太监与皇帝
《 索恩丛书·盛清统治下的太监与皇帝 》

售價:NT$ 403.0
透过器物看历史(全6册)
《 透过器物看历史(全6册) 》

售價:NT$ 2234.0
我在台北故宫博物院读名画
《 我在台北故宫博物院读名画 》

售價:NT$ 500.0
尼罗河往事:古埃及文明4000年
《 尼罗河往事:古埃及文明4000年 》

售價:NT$ 347.0

建議一齊購買:

+

NT$ 384
《 金桢勋的数学随笔 》
+

NT$ 514
《 深度探索区块链:Hyperledger技术与应用 》
+

NT$ 579
《 TensorFlow:实战Google深度学习框架(第2版) 》
+

NT$ 449
《 技术领导力:程序员如何才能带团队 》
+

NT$ 514
《 深入浅出强化学习:原理入门 》
+

NT$ 644
《 神经网络设计(原书第2版) 》
內容簡介:
本书初步探索了将深度学习应用于自然语言处理的方法。概述了自然语言处理的一般概念,通过具体实例说明了如何提取自然语言文本的特征以及如何考虑上下文关系来生成文本。书中自然语言文本的特征提取是通过卷积神经网络来实现的,而根据上下文关系来生成文本则利用了循环神经网络。这两个网络是深度学习领域中常用的基础技术。
關於作者:
小高知宏日本福井大学大学院工学研究科教授。其主要著作有《计算机系统》《从基础开始学会TCPIP Java网络程序设计 第2版》《初学AI程序设计——用C语言制作人工智能和人工无能》《初学机器学习》《基于AI的大规模数据处理入门》《人工智能入门》等。
目錄
CONTENTS
译者序
前言
第1章 自然语言处理与深度学习1
1.1 自然语言处理1
1.1.1 什么是自然语言处理1
1.1.2 自然语言处理基础4
1.2 深度学习13
1.2.1 人工智能与机器学习13
1.2.2 神经网络16
1.2.3 卷积神经网络和自编码器22
1.3 与自然语言处理相关的深度学习27
1.3.1 自然语言处理与神经网络、深度学习27
1.3.2 用神经网络来表达单词意义29
1.3.3 深度学习应用于自然语言处理31
第2章 基于文本处理的自然语言处理32
2.1 自然语言文本的文本处理32
2.1.1 文字处理32
2.1.2 单词处理45
2.1.3 1-of-N表示的处理54
2.2 基于单词2-gram的文本生成68
第3章 深度学习应用于自然语言文本分析77
3.1 基于CNN的文本分类77
3.2 准备1:卷积运算和池化处理81
3.2.1 卷积运算81
3.2.2 池化处理90
3.3 准备2:全连接型神经网络96
3.3.1 基于层次结构的全连接型神经网络的构造及学习方法96
3.3.2 全连接型神经网络的实现99
3.4 卷积神经网络的实现102
3.4.1 卷积神经网络的结构102
3.4.2 由卷积神经网络学习1-of-N表示数据103
3.4.3 基于CNN的单词序列评估118
第4章 文本生成与深度学习133
4.1 基于循环神经网络的文本生成133
4.1.1 神经网络和文本生成133
4.1.2 循环神经网络136
4.2 RNN的实现139
4.2.1 RNN程序的设计139
4.2.2 RNN程序的实现141
4.3 基于RNN的文本生成154
4.3.1 基于RNN的文本生成框架154
4.3.2 文本生成实验的实例160
附录A 将行的重复次数添加到行首的程序uniqc.c167
附录B 按照行首的数值对行进行排序的程序sortn.c169
附录C 全连接型神经网络的程序bp.c171
参考文献178
內容試閱
PREFACE前言深度学习技术在计算机图像识别领域取得了重大成果,这一技术目前已经逐渐应用于机器学习的多个不同领域,使人工智能发展到了过去所不能达到的能力层次。同样,深度学习也能应用于自然语言处理领域,能够解决过去不能处理的各种自然语言处理问题。
本书初步探索了将深度学习应用于自然语言处理的方法,概述了自然语言处理的常见概念,通过具体实例说明了如何提取自然语言文本的特征以及如何考虑上下文关系来生成文本。本书中,自然语言文本的特征提取是通过卷积神经网络来实现的,根据上下文关系来生成文本则利用了循环神经网络。这两个网络是深度学习领域中常用的基础技术。
本书通过实现C语言程序来具体讲解自然语言处理与深度学习的相关技术,所给出的程序都能在普通的个人电脑上执行。通过实际执行这些C语言程序,确认其运行过程,并根据需要对程序进行修改,读者能够更深刻地理解自然语言处理与深度学习技术。
本书的完成离不开作者在福井大学从事科研活动积累的经验,在此特别感谢提供这样机会的福井大学教职员和学生。此外,特别感谢Ohmsha出版社提供了出版本书的机会。最后,感谢支持我完成本书的家人洋子、研太郎、桃子以及优。
小高知宏2017年2月

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.