登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』Principles of Tribology , 2nd Edition 摩擦学原理(第2版)

書城自編碼: 3101347
分類: 簡體書→大陸圖書→教材研究生/本科/专科教材
作者: 温诗铸、黄平
國際書號(ISBN): 9787302485261
出版社: 清华大学出版社
出版日期: 2017-10-01
版次: 1
頁數/字數: 538/
書度/開本: 16开 釘裝: 平装

售價:NT$ 1210

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
罗马政治观念中的自由
《 罗马政治观念中的自由 》

售價:NT$ 230.0
中国王朝内争实录:宠位厮杀
《 中国王朝内争实录:宠位厮杀 》

售價:NT$ 281.0
凡事发生皆有利于我(这是一本读了之后会让人运气变好的书”治愈无数读者的心理自助经典)
《 凡事发生皆有利于我(这是一本读了之后会让人运气变好的书”治愈无数读者的心理自助经典) 》

售價:NT$ 203.0
未来特工局
《 未来特工局 》

售價:NT$ 254.0
高术莫用(十周年纪念版 逝去的武林续篇 薛颠传世之作 武学尊师李仲轩家世 凸显京津地区一支世家的百年沉浮)
《 高术莫用(十周年纪念版 逝去的武林续篇 薛颠传世之作 武学尊师李仲轩家世 凸显京津地区一支世家的百年沉浮) 》

售價:NT$ 250.0
英国简史(刘金源教授作品)
《 英国简史(刘金源教授作品) 》

售價:NT$ 449.0
便宜货:廉价商品与美国消费社会的形成
《 便宜货:廉价商品与美国消费社会的形成 》

售價:NT$ 352.0
读书是一辈子的事(2024年新版)
《 读书是一辈子的事(2024年新版) 》

售價:NT$ 352.0

編輯推薦:
本书汇集摩擦学研究进展以及作者和同事们从事该领域研究的成果,系统地阐述摩擦学的基本原理与应用,全面反映现代摩擦学的研究状况和发展趋势。全书共21章,由润滑理论与润滑设计、摩擦磨损机理与控制、应用摩擦学等三部分组成。除摩擦学传统内容外,还论述了摩擦学与相关学科交叉而形成的研究领域。本书针对工程实际中各种摩擦学现象,着重阐述在摩擦过程中的变化规律和特征,进而介绍基本理论和分析计算方法以及实验测试技术,并说明它们在工程中的实际应用。本书可作为机械设计与理论专业的研究生教材和高等院校机械工程各类专业师生的教学参考书,亦可供从事机械设计和研究的工程技术人员参考。
內容簡介:
本书汇集摩擦学研究的*进展及作者和其同事从事该领域的研究成果,系统地阐述摩擦学的基本原理与应用,全面反映现代摩擦学的研究状况和发展趋势。
全书共 21章,由润滑理论与润滑设计、摩擦磨损机理与控制、应用摩擦学等 3部分组成。除摩擦学传统内容外,还论述了摩擦学与相关学科交叉而形成的研究领域。本书针对工程实际中的各种摩擦学现象,着重阐述摩擦过程中的变化规律和特征,进而介绍基本理论、分析计算方法以及实验测试技术,并说明它们在工程中的实际应用。
本书可作为机械设计与理论专业的研究生教材以及高等院校机械工程各类专业师生的教学参考书,也可以供从事机械设计和研究的工程技术人员参考。
關於作者:
温诗铸 清华大学精密仪器与机械学系教授。1932年生于江西省丰城市。1955年毕业于清华大学机械制造系后留校任教,历任机械设计教研室主任、摩擦学研究室主任、摩擦学国家重点实验室主任。长期从事机械设计与理论专业的教学和研究,出版《摩擦学原理》(第1、2、3版)、《耐磨损设计》、《弹性流体动力润滑》、《纳米摩擦学》、《界面科学与技术》、《Principles of Tribology》等6部著作,发表学术论文500余篇。获国家自然科学奖二等奖、国家技术发明奖三等奖、全国优秀科技图书奖一、二等奖以及省部级科技进步奖等共19项。1999年被选为中国科学院院士。
目錄
Contents
About the Authors xvii
Second Edition Preface xix
Preface xxi
Introduction xxiii
Part I Lubrication Theory 1
1 Properties of Lubricants 3
1.1 Lubrication States 3
1.2 Density of Lubricant 5
1.3 Viscosity of Lubricant 7
1.3.1 Dynamic Viscosity and Kinematic
Viscosity 7
1.3.1.1 Dynamic Viscosity 7
1.3.1.2 Kinematic Viscosity 8
1.3.2 Relationship between Viscosity and
Temperature 9
1.3.2.1 ViscosityTemperature Equations 9
1.3.2.2 ASTM ViscosityTemperature Diagram
9
1.3.2.3 Viscosity Index 10
1.3.3 Relationship between Viscosity and
Pressure 10
1.3.3.1 Relationships between Viscosity,
Temperature and Pressure 11
1.4 Non-Newtonian Behaviors 12
1.4.1 ReeEyring Constitutive Equation 12
1.4.2 Visco-Plastic Constitutive Equation
13
1.4.3 Circular Constitutive Equation 13
1.4.4 Temperature-Dependent Constitutive
Equation 13
1.4.5 Visco-Elastic Constitutive Equation
14
1.4.6 Nonlinear Visco-Elastic Constitutive
Equation 14
1.4.7 A Simple Visco-Elastic Constitutive
Equation 15
1.4.7.1 Pseudoplasticity 16
1.4.7.2 Thixotropy 16
1.5 Wettability of Lubricants 16
1.5.1 Wetting and Contact Angle 17
1.5.2 Surface Tension 17
1.6 Measurement and Conversion of Viscosity
19
1.6.1 Rotary Viscometer 19
1.6.2 Off-Body Viscometer 19
1.6.3 Capillary Viscometer 19
References 21
2 Basic Theories of Hydrodynamic
Lubrication 22
2.1 Reynolds Equation 22
2.1.1 Basic Assumptions 22
2.1.2 Derivation of the Reynolds Equation
23
2.1.2.1 Force Balance 23
2.1.2.2 General Reynolds Equation 25
2.2 Hydrodynamic Lubrication 26
2.2.1 Mechanism of Hydrodynamic Lubrication
26
2.2.2 Boundary Conditions and Initial
Conditions of the Reynolds Equation 27
2.2.2.1 Boundary Conditions 27
2.2.2.2 Initial Conditions 28
2.2.3 Calculation of Hydrodynamic
Lubrication 28
2.2.3.1 Load-Carrying CapacityW 28
2.2.3.2 Friction ForceF 28
2.2.3.3 Lubricant FlowQ 29
2.3 Elastic Contact Problems 29
2.3.1 Line Contact 29
2.3.1.1 Geometry and Elasticity Simulations
29
2.3.1.2 Contact Area and Stress 30
2.3.2 Point Contact 31
2.3.2.1 Geometric Relationship 31
2.3.2.2 Contact Area and Stress 32
2.4 Entrance Analysis of EHL 34
2.4.1 Elastic Deformation of Line Contacts
35
2.4.2 Reynolds Equation Considering the
Effect of Pressure-Viscosity 35
2.4.3 Discussion 36
2.4.4 Grubin FilmThickness Formula 37
2.5 Grease Lubrication 38
References 40
3 Numerical Methods of Lubrication
Calculation 41
3.1 Numerical Methods of Lubrication 42
3.1.1 Finite Difference Method 42
3.1.1.1 Hydrostatic Lubrication 44
3.1.1.2 Hydrodynamic Lubrication 44
3.1.2 Finite Element Method and Boundary
Element Method 48
3.1.2.1 Finite Element Method FEM 48
3.1.2.2 Boundary Element Method 49
3.1.3 Numerical Techniques 51
3.1.3.1 Parameter Transformation 51
3.1.3.2 Numerical Integration 51
3.1.3.3 Empirical Formula 53
3.1.3.4 SuddenThickness Change 53
3.2 Numerical Solution of the Energy
Equation 54
3.2.1 Conduction and Convection of Heat 55
3.2.1.1 Conduction Heat Hd 55
3.2.1.2 Convection Heat Hv 55
3.2.2 Energy Equation 56
3.2.3 Numerical Solution of Energy Equation
59
3.3 Numerical Solution of
Elastohydrodynamic Lubrication 60
3.3.1 EHL Numerical Solution of Line
Contacts 60
3.3.1.1 Basic Equations 60
3.3.1.2 Solution of the Reynolds Equation
62
3.3.1.3 Calculation of Elastic Deformation
62
3.3.1.4 DowsonHigginson FilmThickness
Formula of Line Contact EHL 64
3.3.2 EHL Numerical Solution of Point
Contacts 64
3.3.2.1 The Reynolds Equation 65
3.3.2.2 Elastic Deformation Equation 66
3.3.2.3 HamrockDowson FilmThickness
Formula of Point Contact EHL 66
3.4 Multi-Grid Method for Solving EHL
Problems 68
3.4.1 Basic Principles of Multi-Grid Method
68
3.4.1.1 Grid Structure 68
3.4.1.2 Discrete Equation 68
3.4.1.3 Transformation 69
3.4.2 Nonlinear Full Approximation Scheme
for the Multi-Grid Method 69
3.4.3 V andWIterations 71
3.4.4 Multi-Grid Solution of EHL Problems
71
3.4.4.1 Iteration Methods 71
3.4.4.2 Iterative Division 72
3.4.4.3 Relaxation Factors 73
3.4.4.4 Numbers of Iteration Times 73
3.4.5 Multi-Grid Integration Method 73
3.4.5.1 Transfer Pressure Downwards 74
3.4.5.2 Transfer Integral Coefficients
Downwards 74
3.4.5.3 Integration on the Coarser Mesh 74
3.4.5.4 Transfer Back Integration Results
75
3.4.5.5 Modification on the Finer Mesh 75
References 76
4 Lubrication Design of Typical Mechanical
Elements 78
4.1 Slider and Thrust Bearings 78
4.1.1 Basic Equations 78
4.1.1.1 Reynolds Equation 78
4.1.1.2 Boundary Conditions 78
4.1.1.3 Continuous Conditions 79
4.1.2 Solutions of Slider Lubrication 79
4.2 Journal Bearings 81
4.2.1 Axis Position and Clearance Shape 81
4.2.2 Infinitely Narrow Bearings 82
4.2.2.1 Load-Carrying Capacity 83
4.2.2.2 Deviation Angle and Axis Track 83
4.2.2.3 Flow 84
4.2.2.4 Frictional Force and Friction
Coefficient 84
4.2.3 InfinitelyWide Bearings 85
4.3 Hydrostatic Bearings 88
4.3.1 Hydrostatic Thrust Plate 89
4.3.2 Hydrostatic Journal Bearings 90
4.3.3 Bearing Stiffness andThrottle 90
4.3.3.1 Constant Flow Pump 91
4.3.3.2 Capillary Throttle 91
4.3.3.3 Thin-Walled OrificeThrottle 92
4.4 Squeeze Bearings 92
4.4.1 Rectangular Plate Squeeze 93
4.4.2 Disc Squeeze 94
4.4.3 Journal Bearing Squeeze 94
4.5 Dynamic Bearings 96
4.5.1 Reynolds Equation of Dynamic Journal
Bearings 96
4.5.2 Simple Dynamic Bearing Calculation 98
4.5.2.1 A Sudden Load 98
4.5.2.2 Rotating Load 99
4.5.3 General Dynamic Bearings 100
4.5.3.1 Infinitely Narrow Bearings 100
4.5.3.2 Superimposition Method of Pressures
101
4.5.3.3 Superimposition Method of Carrying
Loads 101
4.6 Gas Lubrication Bearings 102
4.6.1 Basic Equations of Gas Lubrication
102
4.6.2 Types of Gas Lubrication Bearings 103
4.7 Rolling Contact Bearings 106
4.7.1 Equivalent Radius R 107
4.7.2 Average Velocity U 107
4.7.3 Carrying Load PerWidthWb 107
4.8 Gear Lubrication 108
4.8.1 Involute Gear Transmission 109
4.8.1.1 Equivalent Curvature Radius R 110
4.8.1.2 Average Velocity U 111
4.8.1.3 Load PerWidthWb 112
4.8.2 Arc Gear Transmission EHL 112
4.9 Cam Lubrication 114
References 116
5 Special Fluid Medium Lubrication 118
5.1 Magnetic Hydrodynamic Lubrication 118
5.1.1 Composition and Classification of
Magnetic Fluids 118
5.1.2 Properties of Magnetic Fluids 119
5.1.2.1 Density of Magnetic Fluids 119
5.1.2.2 Viscosity of Magnetic Fluids 119
5.1.2.3 Magnetization Strength of Magnetic
Fluids 120
5.1.2.4 Stability of Magnetic Fluids 120
5.1.3 Basic Equations of Magnetic
Hydrodynamic Lubrication 121
5.1.4 Influence Factors on Magnetic EHL 123
5.2 Micro-Polar Hydrodynamic Lubrication
124
5.2.1 Basic Equations of Micro-Polar Fluid
Lubrication 124
5.2.1.1 Basic Equations of Micro-Polar Fluid
Mechanics 124
5.2.1.2 Reynolds Equation of Micro-Polar
Fluid 125
5.2.2 Influence Factors on Micro-Polar
Fluid Lubrication 128
5.2.2.1 Influence of Load 128
5.2.2.2 Main Influence Parameters of
Micro-Polar Fluid 129
5.3 Liquid Crystal Lubrication 130
5.3.1 Types of Liquid Crystal 130
5.3.1.1 Tribological Properties of
Lyotropic Liquid Crystal 131
5.3.1.2 Tribological Properties
ofThermotropic Liquid Crystal 131
5.3.2 Deformation Analysis of Liquid
Crystal Lubrication 132
5.3.3 Friction Mechanism of Liquid Crystal
as a Lubricant Additive 136
5.3.3.1 Tribological Mechanism of
4-pentyl-4-cyanobiphenyl 136
5.3.3.2 Tribological Mechanism of
Cholesteryl Oleyl Carbonate 136
5.4 Electric Double Layer Effect inWater
Lubrication 137
5.4.1 Electric Double Layer Hydrodynamic
Lubrication Theory 138
5.4.1.1 Electric Double Layer Structure 138
5.4.1.2 Hydrodynamic Lubrication Theory of
Electric Double Layer 138
5.4.2 Influence of Electric Double Layer on
Lubrication Properties 142
5.4.2.1 Pressure Distribution 142
5.4.2.2 Load-Carrying Capacity 143
5.4.2.3 Friction Coefficient 144
5.4.2.4 An Example 144
References 145
6 Lubrication Transformation and Nanoscale
Thin Film Lubrication 147
6.1 Transformations of Lubrication States
147
6.1.1 Thickness-Roughness Ratio ? 147
6.1.2 Transformation from Hydrodynamic
Lubrication to EHL 148
6.1.3 Transformation from EHL to Thin Film
Lubrication 149
6.2 Thin Film Lubrication 152
6.2.1 Phenomenon ofThin Film Lubrication
153
6.2.2 Time Effect of Thin Film Lubrication
154
6.2.3 Shear Strain Rate Effect onThin Film
Lubrication 157
6.3 Analysis ofThin Film Lubrication 158
6.3.1 Difficulties in Numerical Analysis of
Thin Film Lubrication 158
6.3.2 Tichys Thin Film Lubrication Models
160
6.3.2.1 Direction Factor Model 160
6.3.2.2 Surface Layer Model 161
6.3.2.3 Porous Surface Layer Model 161
6.4 Nano-Gas Film Lubrication 161
6.4.1 Rarefied Gas Effect 162
6.4.2 Boundary Slip 163
6.4.2.1 Slip Flow 163
6.4.2.2 Slip Models 163
6.4.2.3 Boltzmann Equation for Rarefied Gas
Lubrication 165
6.4.3 Reynolds Equation Considering the
Rarefied Gas Effect 165
6.4.4 Calculation of Magnetic HeadDisk of
UltraThin Gas Lubrication 166
6.4.4.1 Large Bearing Number Problem 167
6.4.4.2 Sudden Step Change Problem 167
6.4.4.3 Solution of Ultra-Thin Gas
Lubrication of Multi-Track Magnetic Heads 167
References 169
內容試閱
Second Edition Preface
This edition of Principles of Tribology,
based on the first edition, is formed by revising the inadequacies
of the original edition and its being
improved in response to the hotspots of recent
tribology research. Since the book was
first published, the readers have offered various suggestions
and opinions, and given the developments in
tribology research, we thought it necessary
to make this revision of the book.
Although one important task for this
edition was to make some error corrections, it retains
the basic framework of the first edition,
with 21 chapters in three parts.
Also, in response to the rapid development
of high-speed railways and the implementation
of the lunar exploration project in China,
rolling friction has become more important, so it is
brought into a separate chapter 11.
Although in the previous version, rolling frictionwas mentioned
as a typical phenomenon of friction, we
only gave some basic definitions. In Chapter 11,
we give more detail on rolling friction
definitions, rolling friction theories and stick-slip phenomena
in rolling friction, as well as contact and
heat generation of rolling friction between
wheel and rail. In fact, rolling friction
exists widely in transportation, automobile, machinery
manufacturing, production and daily life,
and it has functions which cannot be substituted by
sliding friction.
Another new area of content in this edition
is tribology research in MEMS
micro-electromechanical system covered in
Chapter 20. This includes the application
of atomic force microscopy in tribology of
MEMS, micro motor tribology research and micro
analysis of wear mechanisms. This content
is focused on recent tribology research and the
rapid development of MEMS.
Also, ecological tribology, a hot topic in
tribology research, has been introduced in
Chapter 21. This chapter includes zero
friction and superlubrication, green lubricating oil,
friction-induced noise and its control,
plus remanufacturing technologies and self-repairing
technology. Ecological tribology research
will become an important research direction for the
future.
Of course, the new content is far more than
just rolling friction, MEMS tribology and green
tribology, but limited space here precludes
more detailed coverage of the additions. We hope
that the contents of the book will be more
systematic and accurate in this edition.
We present our most sincere thanks to our
colleagues and graduate students for their enthusiastic
support, and to all the others who have
provided help and made a contribution to the
development of tribology research in
general and this edition in particular.
March 2016 Wen Shizhu
Huang Ping

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.