登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』Theory and Calculation of Heat Transfer in Furnaces(炉内传热理论与计算)

書城自編碼: 3025907
分類: 簡體書→大陸圖書→工業技術能源与动力工程
作者: 张衍国、李清海、周会
國際書號(ISBN): 9787302470694
出版社: 清华大学出版社
出版日期: 2017-06-01
版次: 1 印次: 1

書度/開本: 32开 釘裝: 平装

售價:NT$ 922

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
诛吕:“诸吕之乱”的真相与吕太后时期的权力结构
《 诛吕:“诸吕之乱”的真相与吕太后时期的权力结构 》

售價:NT$ 454.0
炙野(全2册)
《 炙野(全2册) 》

售價:NT$ 356.0
女人的胜利
《 女人的胜利 》

售價:NT$ 254.0
数据有道:数据分析+图论与网络+微课+Python编程(鸢尾花数学大系:从加减乘除到机器学习)
《 数据有道:数据分析+图论与网络+微课+Python编程(鸢尾花数学大系:从加减乘除到机器学习) 》

售價:NT$ 1214.0
500万次倾听:陪伤心的人聊聊
《 500万次倾听:陪伤心的人聊聊 》

售價:NT$ 245.0
英国商业500年(见证大国崛起与企业兴衰,启迪未来商业智慧。)
《 英国商业500年(见证大国崛起与企业兴衰,启迪未来商业智慧。) 》

售價:NT$ 367.0
万千心理·儿童心理治疗中的心智化:临床实践指导
《 万千心理·儿童心理治疗中的心智化:临床实践指导 》

售價:NT$ 398.0
自我囚禁的人:完美主义的心理成因与自我松绑(破除你对完美主义的迷思,尝试打破自我评价过低与焦虑的恶性循环)
《 自我囚禁的人:完美主义的心理成因与自我松绑(破除你对完美主义的迷思,尝试打破自我评价过低与焦虑的恶性循环) 》

售價:NT$ 301.0

編輯推薦:
通过该课程学习使同学掌握燃气、燃油、燃煤锅炉的炉内传热计算和国内水动力学计算,为将来从事能源动力行业大型蒸汽发生器(即锅炉,是热力发电站的三大主机之一,这三大主机分别为锅炉、汽轮机和发电机)的设计奠定基础。
內容簡介:
本书简明而系统地阐述了炉内传热的基本原理、计算方法。全书共分七章,包括辐射换热的基本理论与计算,层燃炉、室燃炉和循环床锅炉的炉膛传热计算方法,锅炉热力计算方法以及积灰、结渣对炉膛传热的影响等内容。本书作为衔接基础课传热学和锅炉课程设计之间的教材,对从基础理论到工程实际的处理方法给予了充分的重视。结合实际的工程案例,提供了完整的炉膛传热和热力计算的实例,并结合*的研究进展系统介绍了气固两相流的传热和循环流化床锅炉的传热计算。
本书可作为高等学校热能工程类专业的高年级本科生教材或教学参考书,也可供相关专业工程技术人员参考。
關於作者:
张衍国,教授、博导,《工业加热》编委,全国第四届发明奖荣获者。长期致力于劣质燃料的燃烧、余热利用、固体燃料的热转化等技术的开发和应用及节能改造等技术服务,并及时跟踪前沿课题,开发高炉渣干法粒化技术、可燃固体废弃物超临界热处理、生物质碳化、固体燃料微型热发电等技术。同时还致力于研究各种低品位燃料燃烧及热转化过程中的化学反应规律、物流组织和污染控制等。主持并参加了多项973、自然科学基金、科技重大专项和省校合作课题,承担数十项企业研发、应用课题。出版专著《垃圾清洁焚烧发电技术》、《炉内传热原理与计算》和《Theory and Calculation of Heat Transfer in Furnaces》,发表文章百余篇,其中SCI 30余篇、EI收录 60余篇,获授权发明专利30余项
目錄
Contents
Foreword v Preface vii Symbols ix
1. Theoretical Foundation and Basic Properties of Thermal Radiation
1.1. Thermal Radiation TheoryPlancks Law 3
1.2. Emissive Power and Radiation Characteristics 6
1.2.1. Description of Radiant Energy 6
1.2.2. Physical Radiation Characteristics 9
1.2.3. Monochromatic and Directional Radiation 11
1.3. Basic Laws of Thermal Radiation 12
1.3.1. Plancks Law and Corollaries 12
1.3.2. Lamberts Law 15
1.3.3. Kirchhoffs Law 16
1.4. Radiativity of Solid Surfaces 17
1.4.1. Difference Between Real Surfaces and Blackbody Surfaces 17
1.4.2. Graybody 19
1.4.3. Diffuse Surfaces 19
1.5. Thermal Radiation Energy 21
1.5.1. Thermal Radiation Forms 21
1.5.2. Radiosity 22
1.6. Radiative Geometric Con. guration Factors 24
1.6.1. De. nition of the Con. guration Factor 24
1.6.2. Con. guration Factor Properties 27
1.6.3. Con. guration Factor Calculation 29

1.7.Simpli.ed Treatment of Radiative Heat Exchange in Engineering Calculations
41
1.7.1. Simpli. cation Treatment of Radiation Heat Transfer in Common Engineering Calculations 41
1.7.2. Discussion on Simpli. ed Conditions 41


2. Emission and Absorption of Thermal Radiation
2.1. Emission and Absorption Mechanisms 46
2.1.1. Molecular Spectrum Characteristics 46
2.1.2. Absorption and Radiation of Media 47
i




2.2. Radiativity of Absorbing and Scattering Media 49
2.2.1. Absorbing and Scattering Characteristics of Media 49
2.3.Scattering 50
2.4. Absorption and Scattering of Flue Gas 50
2.4.1. Radiation Intensity Characteristics 50
2.4.2. Exchange and Conservation of Radiant Energy 54
2.4.3. Mean Beam Length, Absorptivity, and Emissivity of Media 59
2.4.4. Gas Absorptivity and Emissivity 65
2.4.5. Flue Gas and Flame Emissivity 71


3. Radiation Heat Exchange Between Isothermal Surfaces
3.1. Radiative Heat Exchange Between Surfaces in Transparent Media 76
3.1.1. Radiative Heat Transfer of a Closed System Composed of Two Surfaces 76
3.1.2. Radiation Transfer of a Closed System Composed of Multiple Surfaces 80
3.1.3. Hole Radiative Heat Transfer 82
3.1.4. Radiative Heat Transfer of Hot Surface, Water Wall, and Furnace Wall 86
3.2. Radiative Heat Exchange Between an Isothermal Medium and a Surface 88
3.2.1. Heat Transfer Between a Medium and a Heating Surface 89
3.2.2. Heat Transfer Between a Medium and a Furnace 90
3.2.3. Calculating Radiative Heat Transfer According to Projected Heat 93

3.3. Radiative Heat Exchange Between a Flue Gas and a Heating Surface with Convection 95


4. Heat Transfer in Fluidized Beds
4.1. Fundamental Concepts of Fluidized Beds 101
4.1.1. De. nition and Characteristics of Fluidized Beds 101
4.1.2. Basic CFB Boiler Structure 103
4.1.3. Different Types of CFB Boilers 105
4.1.4. CFB Boiler Characteristics 107
4.2. Convective Heat Transfer in GasSolid Flow 112
4.2.1. Two-Phase Flow Heat Transfer Mechanism 114
4.2.2. Factors Impacting Two-Phase Heat Transfer 114
4.2.3. Two-Phase Flow Convective Heat Transfer 118
4.3. Radiative Heat Transfer in GasSolid Flow 122
4.4. Heat Transfer Calculation in a Circulating Fluidized Bed 124
4.4.1. In. uence of Heating Surface Size on Heat Transfer 125
4.4.2. CFB Boiler Gas Side Heat Transfer Coef. cient 127


Contents iii



5. Heat Transfer Calculation in Furnaces
5.1. Heat Transfer in Furnaces 132
5.1.1. Processes in the Furnace 132
5.1.2. Classi. cation of Heat Transfer Calculation Methods 133
5.1.3. Furnace Heat Transfer Calculation Equation 134
5.1.4. Flame Temperature 135
5.2. Heat Transfer Calculation in Suspension-Firing Furnaces 139
5.2.1. Gurvich Method 139
5.2.2. Calculation Method Instructions 140
5.2.3. Furnace Heat Transfer Calculation Examples 143
5.3. Heat Transfer Calculation in Grate Furnaces 143
5.3.1. Heat Transfer Calculation in Grate Furnaces in China 143
5.3.2. Heat Transfer Calculation in Grate-Firing Furnaces 149
5.4. Heat Transfer Calculation in Fluidized Bed Furnaces 152
5.4.1. Heat Transfer Calculation in Bubbling Fluidized Bed BFB Furnaces 152
5.4.2. CFB Furnace Structure and Characteristics 153
5.4.3. Heat Transfer Calculation in CFB Furnaces 157
5.5. Heat Transfer Calculation in Back-End Heating Surfaces 160
5.5.1. Basic Heat Transfer Equations 161
5.5.2. Heat Transfer Coef. cient 162
5.6. Thermal Calculation of the Boiler 165
5.6.1. Basic De. nitions of Boiler Heating Surfaces 165
5.6.2. Thermal Calculation Methods for Boilers 169
5.6.3. Thermal Calculation According to Different Furnace Types 170


6. Effects of Ash Deposition and Slagging on Heat Transfer
6.1. Ash Deposition and Slagging Processes and Characteristics 173
6.1.1. Deposition and Slagging 173
6.1.2. Formation and Characteristics of Deposition and Slagging 175
6.1.3. Damage of Deposition and Slagging 178
6.1.4. Ash Composition 179
6.2. Effects of Ash Deposition and Slagging on Heat Transfer in Furnaces 179
6.2.1. Heat Transfer Characteristics and Ash Layer Calculation with Slagging 182
6.2.2. Heat Transfer Calculation with Deposition and Slagging 184
6.3. Effects of Ash Deposition and Slagging on Heat Transfer in Convective Heating Surfaces 185
6.3.1. Effects of Severe Ash Deposition and Slagging 185
6.3.2. Basic Heat Transfer Equation for Convective Heating Surfaces 185
6.3.3. Coef. cients Evaluating the Ash Deposition Effect 188




7. Measuring Heat Transfer in the Furnace
7.1. Flame Emissivity Measurement 194
7.1.1. Bichromatic Optical Pyrometer 194
7.1.2. Auxiliary Radiative Resources 196
7.2. Radiative Flux Measurement 197
7.2.1. Conductive Radiation Heat Flux Meter 198
7.2.2. Capacitive Radiation Heat Flux Meter 199
7.2.3. Calorimetric Radiation Heat Flux Meter 200
7.3. Two Other Types of Heat Flux Meter 200
7.3.1. Heat Pipe Heat Flux Meter 201
7.3.2. Measuring Local Heat Transfer Coef. cient in CFB Furnaces 202
Appendix A. Common Physical Constants of Heat Radiation 205 Appendix B. Common Con. guration Factor Calculation Formulas 207 Appendix C. Example of Thermal Calculation of 113.89 kgs 410 th
Ultra-High-Pressure, Coal-Fired Boiler 219 Appendix D. Supplementary Materials 293
References 323 Subject Index 325
內容試閱
Preface
Energy, communication, and material are basic elements which push modern so-ciety forward in the processes of industrialization, electri.cation, and informa-tion development. Most energy and power for modern devices come from fossil fuels, which are combusted in furnaces to release heat by chemical reaction. In a boiler furnace, radiation is the dominant mechanism of transferring heat from . ame and . ue gas to the heating surface, combined with convectionthe heat is delivered from the surface to the inner media by conduction of the tube wall. The physical and chemical processes in a furnace are a combination of combus-tion, heat transfer, and .ows, all of which are limited by engineering factors. All devices related to combustion including not only power plant boilers, turbines, and engines, but several other industry boilers and stoves must satisfy environ-mental protection and economic demands.This book was written based on a course on Heat Transfer in Furnaces taught by the authors at Tsinghua University, Beijing, for several years. The author would suggest that the reader .rst learn the basic scienti.c concepts of heat transfer. This book provides a connection between fundamental theories on the subject and real-world engineering applications, and the authors sincerely hope it will serve as a helpful reference for the reader during complex engineer-ing design endeavors.This book contains seven chapters in total. After a brief introduction to the essentials and basic principles of radiation in chapter: Theoretical Foundation and Basic Properties of Thermal Radiation , radiative characteristics of . ame and .ue gas with walls are examined in chapter: Emission and Absorption of Thermal Radiation and chapter: Radiation Heat Exchange Between Isother-mal Surfaces . Chapter: Heat Transfer in Fluidized Beds describes the relatively novel concept of heat transfer in .uidized beds, which differs notably from heat transfer in stock boilers or pulverized coal boilers. Chapter: Heat Transfer Calculation in Furnaces provides thermal calculations for furnaces in three typi-cal types of boilers. Chapter: Effects of Ash Deposition and Slagging on Heat Transfer illustrates the effects of ash deposition and slagging on the heat trans-fer of heating surfaces, and chapter: Measuring Heat Transfer in the Furnace discusses furnace heat transfer measurement, including .ame emissivity and heat . ux meters.I strongly feel that this book contains unique and valuable characteristics, including clear and accurate depiction of relevant concepts, simple and .uent
language, and a fascinating and practical extension of the authors combined experience in engineering. I am happy to recommend it to the reader, and hope that students and practitioners of boiler technology will .nd this book inspiring and useful.Academician of Chinese Academy of Sciences, Buxuan WangDepartment of Thermal Engineering Tsinghua University


Chapter 1
Theoretical Foundation and Basic Properties of Thermal Radiation
Chapter Outline 1.1 Thermal Radiation 1.5 Thermal Radiation Energy 21 TheoryPlancks Law 3 1.5.1 Thermal Radiation 1.2 Emissive Power and Radiation Forms 21 Characteristics 6 1.5.2 Radiosity 22 1.2.1 Description 1.6 Radiative Geometric of Radiant Energy 6 Con. guration Factors 24 1.2.2 Physical Radiation 1.6.1 De. nition of the Characteristics 9 Con. guration Factor 24 1.2.3 Monochromatic and 1.6.2 Con. guration Factor Directional Radiation 11 Properties 27 1.3 Basic Laws of Thermal 1.6.3 Con. guration Factor Radiation 12 Calculation 29 1.3.1 Plancks Law and 1.7 Simpli. ed Treatment of Corollaries 12 Radiative Heat Exchange in 1.3.2 Lamberts Law 15 Engineering Calculations 41 1.3.3 Kirchhoffs Law 16 1.7.1 Simpli. cation 1.4 Radiativity of Solid Surfaces 17 Treatment of Radiation 1.4.1 Difference Between Real Heat Transfer in Surfaces and Blackbody Common Engineering Surfaces 17 Calculations 41 1.4.2 Graybody 19 1.7.2 Discussion on 1.4.3 Diffuse Surfaces 19 Simpli. ed Conditions 41
All substances continuously emit and absorb electromagnetic energy when their molecules or atoms are excited by factors associated with internal energy such as heating, illumination, chemical reaction, or particle collision. This process is called radiation. Radiation is considered a series of electromagnetic waves in classic physical theory, while modern physics considers it light quanta, that is, the transport of photons. Strictly speaking, radiation exhibits wave-particle duality, possessing properties of not only particles but also waves; this work1
considers these to be the same, that is, radiation refers simultaneously to both photons and electromagnetic waves.At equilibrium, the internal energy of a substance is related to its tempera-ture the higher the temperature, the greater the internal energy. The emitted radiation covers the entire electromagnetic wave spectrum, as illustrated sche-matically in Fig. 1.1 .Thermal energy is the energy possessed by a substance due to the random and irregular motion of its atoms or molecules. Thermal radiation is the trans-formation of energy from thermal energy to radiant energy by emission of rays. The wavelength range encompassed by thermal radiation is approximately from0.1 to 1000 .m, which can be divided into three subranges: the infrared from 0.7 to 1000 .m, the visible from 0.4 to 0.7 .m, and the near ultraviolet from 0.1 to0.4 .m. Thermal radiation is a form of heat transfer between objects, character-ized by the exchange of energy by emitting and absorbing thermal rays.Consider, for example, two concentric spherical shells with different ini-tial temperatures t1

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.