登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』离散数学及其应用(英文精编版·第7版)

書城自編碼: 2957900
分類: 簡體書→大陸圖書→教材研究生/本科/专科教材
作者: [美]肯尼思 H. 罗森[Kenneth H. Rosen]
國際書號(ISBN): 9787111555360
出版社: 机械工业出版社
出版日期: 2017-02-01
版次: 1 印次: 1
頁數/字數: 537/630000
書度/開本: 16开 釘裝: 平装

售價:NT$ 569

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
英雄之旅:把人生活成一个好故事
《 英雄之旅:把人生活成一个好故事 》

售價:NT$ 398.0
分析性一体的涌现:进入精神分析的核心
《 分析性一体的涌现:进入精神分析的核心 》

售價:NT$ 556.0
火枪与账簿:早期经济全球化时代的中国与东亚世界
《 火枪与账簿:早期经济全球化时代的中国与东亚世界 》

售價:NT$ 352.0
《全面与进步跨太平洋伙伴关系协定》国有企业条款研究
《 《全面与进步跨太平洋伙伴关系协定》国有企业条款研究 》

售價:NT$ 449.0
银行业架构网络BIAN(全球数字化时代金融服务业框架)(数字化转型与创新管理丛书)
《 银行业架构网络BIAN(全球数字化时代金融服务业框架)(数字化转型与创新管理丛书) 》

售價:NT$ 449.0
金托邦:江湖中的沉重正义
《 金托邦:江湖中的沉重正义 》

售價:NT$ 275.0
易经今解:释疑·解惑·见微
《 易经今解:释疑·解惑·见微 》

售價:NT$ 403.0
东欧史(全二册)-“中间地带”的困境
《 东欧史(全二册)-“中间地带”的困境 》

售價:NT$ 1010.0

建議一齊購買:

+

NT$ 713
《 离散数学及其在计算机科学中的应用(英文版) 》
+

NT$ 1721
《 深入理解计算机系统(英文版·第3版) 》
+

NT$ 425
《 离散数学及其应用(原书第7版 本科教学版) 》
+

NT$ 1071
《 离散数学及其应用(原书第7版) 》
+

NT$ 739
《 离散数学(第七版) 》
+

NT$ 307
《 离散数学(第五版) 》
內容簡介:
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及逻辑和证明,集合、函数、序列、求和与矩阵,计数,关系,图,树,布尔代数。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
關於作者:
Kenneth H. Rosen 1972年获密歇根大学数学学士学位,1976年获麻省理工学院数学博士学位,1982年加入贝尔实验室,现为AT&T实验室特别成员,国际知名的计算机数学专家,除本书外,还著有《初等数论及其应用》等书。
目錄
Contents
The Adapter ''s Words iv
Preface vi
About the Author xi
The Companion Website xii
To the Student xiv
List of Symbols xvii
1 The Foundations: Logic and Proofs1
11 Propositional Logic1
12 Applications of Propositional Logic13
13 Propositional Equivalences20
14 Predicates and Quantifiers32
15 Nested Quantifiers49
16 Rules of Inference59
17 Introduction to Proofs70
18 Proof Methods and Strategy80
End-of-Chapter Material96
2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices 101
21 Sets101
22 Set Operations111
23 Functions121
24 Sequences and Summations137
25 Cardinality of Sets149
26 Matrices156
End-of-Chapter Material163
3 Counting169
31 The Basics of Counting169
32 The Pigeonhole Principle181
33 Permutations and Combinations188
34 Binomial Coefficients and Identities195
35 Generalized Permutations and Combinations202
36 Generating ermutations and Combinations212
End-of-Chapter Material216
4 Advanced Counting Techniques223
41 Applications of Recurrence Relations223
42 Solving Linear Recurrence Relations233
43 Divide-and-Conquer Algorithms and Recurrence Relations245
44 Generating Functions254
45 Inclusion朎xclusion268
46 Applications of Inclusion朎xclusion273
End-of-Chapter Material279
5 Relations287
51 Relations and Their Properties287
52 n-ary Relations and Their Applications296
53 Representing Relations303
54 Closures of Relations309
55 Equivalence Relations318
56 Partial Orderings327
End-of-Chapter Material340
6 Graphs347
61 Graphs and Graph Models347
62 Graph Terminology and Special Types of Graphs356
63 Representing Graphs and Graph Isomorphism372
64 Connectivity380
65 Euler and Hamilton Paths393
66 Shortest-Path Problems404
67 Planar Graphs414
68 Graph Coloring421
End-of-Chapter Material429
7 Trees439
71 Introduction to Trees439
72 Applications of Trees450
73 Tree Traversal463
74 Spanning Trees475
75 Minimum Spanning Trees486
End-of-Chapter Material491
8 Boolean Algebra497
81 Boolean Functions497
82 Representing Boolean Functions504
83 Logic Gates507
84 Minimization of Circuits513
End-of-Chapter Material525
Suggested Readings 531
Answers to Exercises
內容試閱
PrefaceIn writing this book, I was guided by my long-standing experience and interest in teaching discrete mathematics. For the student, my purpose was to present material in a precise, readable manner, with the concepts and techniques of discrete mathematics clearly presented and demonstrated. My goal was to show the relevance and practicality of discrete mathematics to students, who are often skeptical. I wanted to give students studying computer science all of the mathematical foundations they need for their future studies. I wanted to give mathematics students an understanding of important mathematical concepts together with a sense of why these concepts are important for applications. And most importantly, I wanted to accomplish these goals without watering down the material.For the instructor, my purpose was to design a flexible, comprehensive teaching tool using proven pedagogical techniques in mathematics. I wanted to provide instructors with a package of materials that they could use to teach discrete mathematics effectively and efficiently in the most appropriate manner for their particular set of students. I hope that I have achieved these goals.I have been extremely gratified by the tremendous success of this text. The many improvements in the seventh edition have been made possible by the feedback and suggestions of a large number of instructors and students at many of the more than 600 North American schools, and at any many universities in parts of the world, where this book has been successfully used.This text is designed for a one-or two-term introductory discrete mathematics course taken by students in a wide variety of majors, including mathematics, computer science, and engineering. College algebra is the only explicit prerequisite, although a certain degree of mathematical maturity is needed to study discrete mathematics in a meaningful way. This book has been designed to meet the needs of almost all types of introductory discrete mathematics courses. It is highly flexible and extremely comprehensive. The book is designed not only to be a successful textbook, but also to serve as valuable resource students can consult throughout their studies and professional life.Goals of a Discrete Mathematics CourseA discrete mathematics course has more than one purpose. Students should learn a particular set of mathematical facts and how to apply them; more importantly, such a course should teach students how to think logically and mathematically. To achieve these goals, this text stresses mathematical reasoning and the different ways problems are solved. Five important themes are interwoven in this text: mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and applications and modeling. A successful discrete mathematics course should carefully blend and balance all five themes.1. Mathematical Reasoning: Students must understand mathematical reasoning in order to read, comprehend, and construct mathematical arguments. This text starts with a discussion of mathematical logic, which serves as the foundation for the subsequent discussions of methods of proof. Both the science and the art of constructing proofs are addressed. The technique of mathematical induction is stressed through many different types of examples of such proofs and a careful explanation of why mathematical induction is a valid proof technique.2. Combinatorial Analysis: An important problem-solving skill is the ability to count or enumerate objects. The discussion of enumeration in this book begins with the basic techniques of counting. The stress is on performing combinatorial analysis to solve counting problems and analyz ealgorithms, not on applying formulae.3. Discrete Structures: A course in discrete mathematics should teach students how to work with discrete structures, which are the abstract mathematical structures used to represent discrete objects and relationships between these objects. These discrete structures include sets, permutations, relations, graphs, trees, and finite-state machines.4. Algor

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.