登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』Nonlinear hyperbolic partial differential equations

書城自編碼: 2948547
分類: 簡體書→大陸圖書→自然科學數學
作者: 王玉柱、刘法贵
國際書號(ISBN): 9787302453765
出版社: 清华大学出版社
出版日期: 2016-12-01
版次: 1 印次: 1
頁數/字數: 210/265000
書度/開本: 32开 釘裝: 平装

售價:NT$ 284

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
建安:官渡大决战(196—200)
《 建安:官渡大决战(196—200) 》

售價:NT$ 245.0
中亚民族史
《 中亚民族史 》

售價:NT$ 840.0
人工智能与智能制造:概念与方法    [美]马苏德·索鲁什    [美]理查德·D.布拉茨
《 人工智能与智能制造:概念与方法 [美]马苏德·索鲁什 [美]理查德·D.布拉茨 》

售價:NT$ 640.0
中平:东汉王朝大崩溃(184—189)
《 中平:东汉王朝大崩溃(184—189) 》

售價:NT$ 245.0
基于鲲鹏的分布式图分析算法实战
《 基于鲲鹏的分布式图分析算法实战 》

售價:NT$ 495.0
中国历史研究入门(全二册)
《 中国历史研究入门(全二册) 》

售價:NT$ 1290.0
夺回大脑 如何靠自己走出强迫
《 夺回大脑 如何靠自己走出强迫 》

售價:NT$ 299.0
夏天,19岁的肖像(青鲤文库)岛田庄司两次入围日本通俗文学奖直木奖的作品 ,同名电影由黄子韬主演!
《 夏天,19岁的肖像(青鲤文库)岛田庄司两次入围日本通俗文学奖直木奖的作品 ,同名电影由黄子韬主演! 》

售價:NT$ 225.0

建議一齊購買:

+

NT$ 778
《 几何V:最小曲面 》
+

NT$ 863
《 数理金融基准分析方法 》
+

NT$ 234
《 透析通路问答 》
+

NT$ 891
《 矩阵计算(英文版·第4版) 》
+

NT$ 205
《 图解杏良种良法 果树科学种植大讲堂 》
編輯推薦:
作者科研实力雄厚,厚积薄发,写成不可多得的本领域经典学术专著,值得推广使用。
關於作者:
刘法贵,教授,理学博士,华北水利水电大学教务处处长。硕士生导师。河南省数学学会理事,郑州市数学学会理事。河南省学术技术带头人,河南省优秀中青年骨干教师,省级重点学科带头人,河南省555省级人选。从事拟线性双曲偏微分方程的研究,在国内外重要学术期刊上发表论文50余篇。
目錄
Preface
...................................................................................................I


Chapter 1Introduction.....................................................................
1

1.1Intention
and Signi.cances ....................................................... 1

1.2Basic
Concepts ........................................................................
7

1.3Some
Examples.......................................................................14


1.4Preliminaries
..........................................................................18

Chapter 2Cauchy
Problem for Nonlinear Hyperbolic Systems in Diagonal Form
...........................................................25
2.1The
Single Nonlinear Hyperbolic Equation ...............................25

2.2The
Classical Solutions to Single Nonlinear Hyperbolic Equation ................................................................................32

2.3Nonlinear
Hyperbolic Equations in Diagonal Form....................40

Chapter 3Singularities
Caused by the Eigenvectors ....................50

3.1Introduction
...........................................................................50

3.2Completely
Reducible Systems.................................................55

3.32-Step
Completely Reducible Systems ......................................59

3.4mm
2-Step Completely Reducible Systems with Constant Eigenvalues
..............................................................67
3.5Non-completely
Reducible Systems ..........................................74

3.6Examples
...............................................................................76


Chapter 4Hyperbolic
Geometric Flow on Riemannian
Surfaces...........................................................................85

4.1Introduction
...........................................................................85

4.2Cauchy
Problem for Hyperbolic Geometric Flow.......................87

4.3Mixed
Initial Boundary Value Problem for Hyperbolic Geometric Flow
......................................................................99
4.4Dissipative
Hyperbolic Geometric Flow .................................. 107

4.5Explicit
Solutions..................................................................119

4.6Radial
Solutions to Hyperbolic Geometric Flow ...................... 124

Chapter 5Life-Span
of Classical Solutions to Hyperbolic Geometric Flow in Two Space Variables with
Slow Decay Initial Data .............................................. 127
5.1Intention
and Signi.cances .................................................... 127

5.2Some
Useful Lemmas ............................................................ 130

5.3Lower
Bound of Life-Span ..................................................... 143

Chapter 6Nonlinear
Hyperbolic Systems with Relaxation ...... 153
6.1Introduction
......................................................................... 153

6.2Global
Classical Solutions...................................................... 155

6.3Applications
.........................................................................162

6.4Convergence
of Approximate Solutions...................................165

Chapter 7Applications..................................................................
175

7.1 One Dimensional Hydromagnetic
Dynamics............................175

7.2 Fluid Flow on a Pipe
............................................................ 187

7.3 Heat Conduction with Finite of
Propagation .......................... 189

7.4 A Nonlinear Systems in
Viscoelasticity...................................191

Bibliography
......................................................................................
202

Index
..................................................................................................
209
內容試閱
Nonlinear hyperbolic partial di.erential equations describe many physical phenomena. Particularly, important examples occur in gas dynamics, shallow water theory, plasma physics, combustion theory, nonlinear elasticity, acous-tics, classical or relativistic .uid dynamics and petroleum reservoir engineering etc. For linear hyperbolic equations with suitably smooth coe.cients, it is well-known that Cauchy problem always admits a unique global classical solution on the whole domain, provided that the initial data are smooth enough. For nonlinear hyperbolic equations, however, the situation is quite di.erent. Gen-erally speaking, in this case, the classical solutions to Cauchy problem exist only locally in time and singularities may occur in a .nite time, even if the initial data are su.ciently smooth and small.This book is concerned with the classical solution to nonlinear hyperbolic partial di.erential equations. The greatest part of the book is the fruit aca-demic research on the part of the author. Some of what contained in the book has been published for the .rst time, and what was previously published in the form of separate papers has also been revised and upgraded.There are 7 chapters in this book. Chapter 1 is a preliminary chapter in which we give some basic concepts of nonlinear hyperbolic system: genuinely nonlinear, linearly degenerate, weak linear degenerate, matching condition etc.In chapter 2, we shall investigate the .rst order nonlinear hyperbolic equa-tion in two independent variables, and give some results on the classical solu-tions.Chapter 3 is devoted to the study of the mechanism and the character of singularity caused by eigenvectors are investigated for nonlinear hyperbolic system, and some new concepts on nonlinear hyperbolic system are proposed.Chapter 4 will concern the Cauchy problem and mixed initial boundary value problem for hyperbolic geometric .ow. Some geometric properties of hyperbolic geometric .ow on general open and closed Riemannian surfaces are also discussed.In chapter 5, we shall investigate the life-span of classical solutions to the hyperbolic geometric .ow in two space variables with slow decay initial data.Chapter 6 will be concerned the dissipative e.ect of the relaxation. The convergence of approximate solution to nonlinear hyperbolic conservation laws with relaxation is proved.In chapter 7, we shall consider some applications of nonlinear hyperbolic system.The whole approach to the problems under discussion is primarily based on the theory on the local solution. For more comprehensive information, the reader may refer to the book by Li Tatsien and Yu Wenci: Boundary Value Problems for Quasilinear Hyperbolic Systems Duke University Mathematics Series V, 1985.Because the local classical solution theory has been established well, the key point of this method is how to establish some uniform a priori estimates on the solution.This work was partially supported by plan for scienti.c innovation Talent of North China University of Water Resources and Electric Power.AuthorAugust, 2016Zhengzhou, China

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.