新書推薦:
《
刻意练习不生气
》
售價:NT$
179.0
《
大宋理财:青苗法与王安石的金融帝国(全彩插图本)
》
售價:NT$
500.0
《
安全感是内心长出的盔甲
》
售價:NT$
305.0
《
快人一步:系统性能提高之道
》
售價:NT$
505.0
《
我们为什么会做梦:让梦不再神秘的新科学
》
售價:NT$
352.0
《
算法图解(第2版)
》
售價:NT$
356.0
《
科学的奇幻之旅
》
售價:NT$
352.0
《
画艺循谱:晚明的画谱与消闲
》
售價:NT$
653.0
|
編輯推薦: |
本书是《组合数学(第4版)》的修订版。全书共分7章,分别是排列与组合、递推关系与母函数、容斥原理与鸽巢原理、Burnside引理与Plya定理、区组设计、编码简介和组合算法简介.丰富的实例及理论和实际相结合是本书一大特点,有利于对问题的深入理解. 本书适合用作计算机相关专业本科生和研究生的教学用书,也可作为数学专业师生的教学参考书。本书自出版以来,已经多次再版和重印,累计发行近10万册,深受广大师生和读者欢迎,数百所高校选用本书作为专业课教材,普遍反映该教材特色突出,教学效果很好。
|
內容簡介: |
Python是近年来十分流行的编程语言。作为脚本语言,Python尽管在速度上比编译语言如C和C等略有逊色,但其开放性、跨平台和易学易用的特点获得了众多专业和非专业人士的青睐和支持。然而目前在介绍Python的书目中却难以觅到一本合适的教材,大部分资料为译著,内容过于宽泛,价格也不菲。一本适合初学者,既能让读者把握Python的核心内容而又不失简洁性,便于理解和操作的实用学习教程正是本书的目标。 本书介绍Python核心知识,每章都有明确的学习目标,配有大量在交互环境下的操练实例和运行结果以帮助读者理解知识点。全书共9章,按照循序渐进的原则安排内容,从内置对象类型到语句语法,再到函数和模块,以及面向对象编程和异常处理等,较全面地覆盖了Python基本内容,最后一章为典型程序代码和程序调试方法,为学习程序设计提供了样例。 本书适合作为高等院校计算机及相关专业本科生的教材,适合Python初学者以及想快速了解Python语言特点的编程爱好者,也可为专业人士提供一定的参考。
|
目錄:
|
目录
第1章排列与组合1
1.1加法法则与乘法法则1
1.2一一对应5
1.3排列与组合8
1.3.1排列与组合的模型8
1.3.2排列与组合问题的举例9
1.4圆周排列14
1.5排列的生成算法15
1.5.1序数法15
1.5.2字典序法17
1.5.3换位法18
1.6允许重复的组合与不相邻的组合20
1.6.1允许重复的组合20
1.6.2不相邻的组合21
1.6.3线性方程的整数解的个数问题21
1.6.4组合的生成21
1.7组合意义的解释22
1.8应用举例28
1.9Stirling公式36
*1.9.1Wallis公式36
*1.9.2Stirling公式的证明38
习题39
第2章递推关系与母函数43
2.1递推关系43
2.2母函数44
2.3Fibonacci序列47
2.3.1Fibonacci序列的递推关系47
2.3.2若干等式48
2.4优选法与Fibonacci序列的应用49
2.4.1优选法49
2.4.2优选法的步骤51
2.4.3Fibonacci的应用51
2.5母函数的性质52
2.6线性常系数齐次递推关系55
2.7关于线性常系数非齐次递推关系62
2.8整数的拆分68
2.9Ferrers图像71
2.10拆分数估计74
2.11指数型母函数76
2.11.1问题的提出76
2.11.2指数型母函数的定义77
2.12广义二项式定理78
2.13应用举例81
2.14非线性递推关系举例100
2.14.1Stirling数100
2.14.2Catalan数105
2.14.3举例109
2.15递推关系解法的补充112
习题114
第3章容斥原理与鸽巢原理120
31DeMorgan定理120
32容斥定理121
33容斥原理举例124
3.4棋盘多项式与有限制条件的排列129
3.5有禁区的排列132
3.6广义的容斥原理134
3.6.1容斥原理的推广134
3.6.2一般公式135
3.7广义容斥原理的应用138
3.8第2类司特林数的展开式141
3.9欧拉函数n142
3.10n对夫妻问题143
3.11Mbius反演定理143
3.12鸽巢原理146
313鸽巢原理举例147
314鸽巢原理的推广150
3141推广形式之一150
3142应用举例150
3.14.3推广形式之二155
3.15Ramsey数156
3.15.1Ramsey问题156
3.15.2Ramsey数159
习题162
第4章Burnside引理与Plya定理168
41群的概念168
411定义168
412群的基本性质169
42置换群171
43循环、奇循环与偶循环175
44Burnside引理179
441若干概念179
442重要定理181
443举例说明184
45Plya定理186
46举例188
47母函数形式的Plya定理194
48图的计数197
习题201
第5章区组设计203
5.1问题的提出203
5.2拉丁方与正交的拉丁方204
5.2.1问题的引入204
5.2.2正交拉丁方及其性质205
5.3域的概念206
5.4Galois域GFpn208
5.5正交拉丁方的构造211
5.6正交拉丁方的应用举例213
5.7均衡不完全的区组设计214
5.7.1基本概念214
5.7.2b,v,r,k,设计215
5.8区组设计的构成方法218
5.9Steiner三元系220
习题222
第6章编码简介225
6.1基本概念225
6.2对称二元信道226
6.3纠错码227
6.3.1最近邻法则227
6.3.2Hamming不等式228
6.4若干简单的编码229
6.4.1重复码229
6.4.2奇偶校验码229
6.5线性码230
6.5.1生成矩阵与校验矩阵230
6.5.2关于生成矩阵和校验矩阵的定理233
6.5.3译码步骤233
6.6Hamming码234
6.7BCH码235
习题238
第7章组合算法简介241
7.1归并排序241
7.1.1算法241
7.1.2举例242
7.1.3复杂性分析242
7.2快速排序243
7.2.1算法的描述244
7.2.2复杂性分析245
7.3FordJohnson排序法246
7.4排序的复杂性下界248
7.5求第k个元素249
7.6排序网络251
7.6.101原理252
7.6.2Bn网络252
7.6.3复杂性分析254
7.6.4Batcher奇偶归并网络254
7.7快速傅里叶变换255
7.7.1问题的提出255
7.7.2预备定理256
7.7.3快速算法257
7.7.4复杂性分析259
7.8DFS算法260
7.9BFS算法261
7.10剪枝术262
7.11状态与图263
7.12分支定界法265
7.12.1TSM问题265
7.12.2任务安排问题268
7.13最短树与Kruskal算法270
7.14Huffman树270
7.15多段判决272
7.15.1问题的提出272
7.15.2最佳原理274
7.15.3矩阵链积问题274
7.15.4图的两点间最短路径275
习题276
|
|