|
編輯推薦: |
本书主要介绍拓扑学中发展得较为普遍并且成熟的理论、概念与方法。除了拓扑K理论外,本书涉及微分拓扑和代数拓扑的几乎所有重要领域,包括微分流形基本理论,上、下同调论,同调群的对偶性,微分形式,de Rham与Hodge理论,同伦论,谱序列及其应用,不动点及其指标公式,不动点类理论,I型和II型Morse理论,示性类理论等。此外,本书还引入作者新发展的一套紧流形的共轭结构理论。应用该理论我们能够很清楚地理解上、下同调群的本质,并且可以推出如Poincare对偶定理、Lefschetz对偶定理、Kunneth公式、同调群万有系数定理,以及关于同伦群与同调群之间关系的Hurewicz定理等许多重要结果。
|
內容簡介: |
本书是一部关于流形的拓扑学专著,较全面和系统地介绍了拓扑学大多数重要领域中的理论与方法。内容涉及微分拓扑、同调论、同伦论、微分形式与谱序列、不动点理论、Morse理论,以及向量丛的示性类理论。同时,书中也介绍了作者新发展的流形共轭结构理论,主要结果包括共轭对称性定理,上、下同调群的几何化定理,*小共轭元球面定理。在这些定理基础上,同调论和同伦论中许多重要定理与结果,如Poincare对偶,Lefschetz对偶,Kunneth公式,上、下同调群,以及Hurewicz定理等的实质及直观意义变得更清楚了。
本书适合于数学、理论物理等相关专业的高年级大学生、研究生、教师及研究人员学习和参考。
|
|