1 INTRODUCTION
1.1 Planing Hull Craft
1.2 Hydrofoil Craft
1.3 Gliding-hydrofoil Craft
2 HYDROFOIL CRAFF AND FOIL THEORY
2.1 Introduction
2.2 Main particulars of hydrofoil crafts
2.3 Linearized Theory for a 2-Dimensional Foil Section
2.4 Cavitation
2.4.1 Background
2.4.2 Cavitation criterion
2.5 Resistance of hydrofoil craft
3 EXPERIMENTAL STUDY OF HYDRODYNAMICS OF PLANING CRAFTS
3.1 Ship model design
3.1.1 Body plan of the planing craft model
3.1.2 Building ship model
3.2 Experimental methods
3.2.1 Towing tank
3.2.2 Linear Displacement Sensor
3.2.3 Experimental techniques
3.2.4 Ship model and test conditions
3.2.5 Measured data and post-processing
3.3 Results and discussion
3.3.1 Resistance coefficient
3.3.2 Optimum Trim angle
3.3.3 Comments on the empirical equation
4 EXPERIMENTAL STUDY OF HYDRODYNAMICS OF GHC
4.1 Hydrofoil design
4.1.1 Lift calculation
4.1.2 Hydrofoil positions
4.2 Experimental methods
4.3 Results and discussion
4.3.1 Hydrodynamics of the GHC ship model
4.3.2 Effect of submergence depth of the hydrofoil
4.3.3 Effect Of The Initial Attack Angles Of The Hydrofoil...
4.3.4 Effect of the Hydrofoil
5 IMPLEMENTATION OF CFD STUDYING HYDRODYNAMIC FEATURE OF HIGH-SPEED CRAFr
5.1 Introduction
5.2 Basic theories and the implementation of the FLUENT to model high-speed
5.3 Turbulence models
5.4 Generation of computational mesh
5.5 Boundary conditions
5.6 Free surface flow model
6 INVESTIGATION OF MESH DEPENDENCE AND COMPUTATIONAL DOMAIN SIZES
6.1 Case I : NACA 4412 hydrofoil
6.1.1 The calculation model and boundary condition
6.1.2 Numerical results
6.2 Case II : Wigley hull
6.2.1 The calculation model and boundary condition
6.2.2 Calculation model and results
6.2.3 Effect of sizes of computation domain
6.2.4 Effect of grid size
7 NUMERICAL INVESTIGATIONS ON HYDRODYNAMIC CHARACTERISTICS OF A PLANING CRAFI" IN STEADY FLOW
7.1 Calculation model for planing craft
7.2 Grid Generation and Turbulence model
7.3 Boundary condition and initial condition
7.4 Numerical results
7.4.1 Validation of resistance coefficients with different Froude numbers
7.4.2 Wave patterns corresponding to different Reynolds numbers
7.4.3 Effect of sizes of computation domain
7.4.4 Pressure distribution around the hull
8 NUMERICAL STUDY OF HYDRODYNAMIC CHARACTERISTICS OF A GLIDING-HYDROFOIL CRAFt IN STEADY FLOW
8.1 Calculation model for the gliding-hydrofoil craft
8.2 Numerical results and discussion
8.2.1 Validation of resistance coefficients with different Froude numbers
8.2.2 Wave patterns for different Froude numbers
8.2.3 Pressure distribution around the hydrofoil
8.3 Further investigation on hydrodynamic characteristics of gliding-hydrofoil craft in steady flow
9 HIGH-SPEED GLIDING-HYDROFOIL CRAFI" IN UNSTEADY FLOW
9.1 Craft motion model from v = vs to v = 0
9.1.1 Computational domain
9.1.2 Boundary conditions and solution settings
9.1.3 Numerical results
9.2 Craft motion model fromU = 0 to v = v
9.3 Gliding-hydrofoil craft with continuous change of incoming flow angle
9.3.1 Calculation model and domain
9.3.2 Numerical results
REFERENCE
INDEX