新書推薦:
《
金托邦:江湖中的沉重正义
》
售價:NT$
275.0
《
易经今解:释疑·解惑·见微
》
售價:NT$
403.0
《
东欧史(全二册)-“中间地带”的困境
》
售價:NT$
1010.0
《
虚拟资本:金融怎样挪用我们的未来
》
售價:NT$
352.0
《
刻意练习不生气
》
售價:NT$
179.0
《
大宋理财:青苗法与王安石的金融帝国(全彩插图本)
》
售價:NT$
500.0
《
安全感是内心长出的盔甲
》
售價:NT$
305.0
《
快人一步:系统性能提高之道
》
售價:NT$
505.0
|
內容簡介: |
《非线性随机动力学的若干数值方法及应用》详细介绍胞映射方法、路径积分方法、自由网格路径积分和算子分裂方法及它们的应用,以及正交多项式逼近方法及其在随机结构动力学中的应用等四部分内容。结合作者的研究,主要介绍几种常见的胞映射方法、动力系统的迭代图胞映射方法、随机动力系统全局分岔行为的研究、基于Gauss—Legendre公式的路径积分法、随机参激与外激联合作用下非线性动力学系统的路径积分解、谐和激励与随机激励作用下Duffing—Rayleigh振子的路径积分解、基于概率密度的Mathieu—Duffing振子的混沌分析、自由网格路径积分法、算子分裂法、正交多项式逼近及其应用。
|
目錄:
|
第一篇胞映射方法
第1章胞映射方法简介
1.1引言
1.2胞映射方法的发展及概况
1.3基础知识以及相关文献
1.3.1分岔基础知识以及相关文献
1.3.2图论基础知识以及相关文献
第2章几种胞映射方法的简单介绍
2.1简单胞映射方法
2.1.1胞状态空间
2.1.2基本概念
2.1.3算法实现
2.1.4算例分析
2.2广义胞映射
2.2.1基本概念
2.2.2算法过程
2.2.3算例分析
2.3基于偏序集和有向图的广义胞映射
2.3.1基本概念
2.3.2广义胞映射和有向图
2.3.3算法实现
2.3.4算例分析
2.4插值胞映射方法
第3章动力系统的迭代图胞映射方法
3.1引言
3.2图胞映射的一种改进方法——逼近动力系统稳定与不稳定流形
3.2.1相关概念的引入
3.2.2驻足和路由的算法
3.2.3计算实例
3.3迭代图胞映射方法
3.3.1基本胞化空间方法
3.3.2复合胞化空间方法
3.3.3算例分析
3.3.4基于复合胞化空间的迭代图胞映射法
3.3.5典型算例
第4章随机动力系统分岔行为的研究
4.1引言
4.2随机系统的分岔
4.3Duffing方程的随机分岔
4.4硬Helmholtz—Duffing振子随机分岔现象的全局分析
4.5有界噪声激励下非对称单势井Duffing振子的随机分岔分析
4.5.1有界噪声
4.5,2确定性非对称Duffing振子的全局特性
4.5,3有界噪声激励下非对称Duffing振子的随机分岔
4.6有界噪声激励下一类Du伍ng振子的安全盆侵蚀
参考文献
第二篇路径积分法
第5章基于Gauss—Legendre公式的路径积分法
5.1引言
5.1.1FPK方程
5.1,2FPK方程的数值解法
5.1.3路径积分法在非线性随机动力学系统研究中的应用
5.2路径积分法的原理
5.3基于Gauss—Legendre公式的路径积分法
5.4基于Gauss—Legendre公式求解时间上平均的概率密度的路径积分法
5.5几类路径积分方法简介
5.5.1Wehner和Wolfer的数值路径积分法
5.5.2Naess的数值路径积分法
5.5,3Narayanan和Kumar的基于Gauss—Legendre公式的数值路径积分
5.5.4diPaolo和Santoro的Poisson白噪声激励的数值路径积分
5.5.5金融期权定价的路径积分解
第6章随机参激与外激联合作用下非线性动力学系统的路径积分解
6.1基本内容
6.2随机参激与外激联合作用下的非线性振子
6.3数值结果与分析
6.3.1情形1
6.3,2情形2
6.3.3情形3
第7章谐和激励与随机激励作用下Duffing—Rayleigh振子的路径积分解
7.1基本内容
7.2谐和激励与随机激励作用下Duffing—Rayleigh振子
7.3路径积分解
7.3.1情形1
7.3.2情形2
7.3.3情形3
第8章基于概率密度的Mathieu—Duffing振子的混沌分析
8.1基本内容
8.2FPK方程与路径积分法
8.3Mathieu—Duffing振子的混沌运动与概率密度
8.3.1Mathieu—Duffing振子的确定性混沌运动
8.3.2高斯白噪声激励对Mathieu—Duffing振子混沌运动的影响
8.3.3系统在混沌运动参数条件下的稳态概率密度
8.3.4借助概率密度研究系统的混沌吸引子结构
参考文献
第三篇自由网格路径积分法与算子分裂法
第9章自由网格路径积分法
9.1MPI法的原理
9.2基于自适应最小二乘的分片线性重构
9.3基于径向基函数的三维重构
9.3.1基于多二次样条的重构
9.3.2基于Gauss基函数的神经网络重构
9.4MPI法的数值算例
9.4.1谐和激励与Gauss白噪声激励的Duffing振子
9.4.2谐和激励与Gauss白噪声激励的Duffing—Rayleigh振子
9.4.3Gauss白噪声激励的Chen系统
第10章算子分裂法
10.1算子分裂法与非标准差分法的相关理论
10.1.1算子分裂法的理论
10.1.2非标准有限差分法
10.2分裂算子的构成
10.2.1隐式分裂算子类型Ⅰ
10.2.2隐式分裂算子类型Ⅱ
10.2.3隐式分裂算子类型Ⅲ
10.3基于非标准差分的算子分裂法的数值应用
10.3.1Gauss色噪声激励的Duffing振子
10.3.2Gauss白噪声激励的Chen系统
参考文献
第四篇正交多项式逼近法
第11章非线性参数随机动力系统的正交展开逼近理论
11.1引言
11.2非线性连续随机动力系统的正交展开逼近
11.2.1连续的权函数和正交多项式
11.2.2连续随机函数的正交展开
11.2.3连续非线性确定性等价系统
11.3非线性离散随机动力系统的正交展开逼近
11.3.1离散的权函数及正交多项式
11.3.2离散随机函数的正交展开
11.3.3离散非线性确定性等价系统
11.4常见的随机变量及对应正交多项式
11.4.1连续随机变量与正交多项式
11.4.2离散随机变量与正交多项式
11.5例子
11.5.1连续随机Brusselator模型
11.5.2离散随机Logistic模型
第12章非线性参数随机动力系统零解的稳定性分析
12.1引言
12.2非线性连续参数随机动力系统的零解稳定性
12.3非线性离散随机动力系统的零解稳定性
12.4随机Brusselator模型零解的渐进稳定性
12.5随机Logistic模型零解的渐进稳定性
第13章非线性参数随机动力系统的动力学行为研究
13.1引言
13.2非线性连续随机动力系统的倍周期分岔
13.2.1随机生物模型
13.2.2随机强度为分岔参数的倍周期分岔
13.3非线性连续随机动力系统的Hopf分岔
13.3.1参数随机动力系统Hopf分岔的存在性
13.3.2参数随机动力系统Hopf分岔的理论分析方法
13.3.3随机Brusselator模型Hopf分岔的数值分析
第14章非线性参数随机动力系统的分岔控制研究
14.1引言
14.2产生非线性参数随机动力系统的Hopf分岔
14.2.1产生确定性动力系统的Hopf分岔
14.2.2产生参数随机动力系统的Hopf分岔
14.3非线性参数随机动力系统的Hopf分岔控制
14.3.1控制Hopf分岔的发生
14.3.2极限环幅值的控制
14.4非线性参数随机动力系统Hopf分岔的随机反馈控制
14.5非线性参数随机动力系统Hopf分岔随机性的控制
第15章非线性参数随机动力系统的混沌控制研究
15.1引言
15.2非反馈控制
15.2.1常数控制
15.2.2弱谐和激励控制
15.3反馈控制
15.4随机反馈控制
参考文献
索引
|
|